Finger-vein identification, a biometric technology that uses vein patterns in the human finger to identify people. In recent years, it has received increasing attention due to its tremendous advantages compared to fingerprint characteristics. Moreover, Deep-Convolutional Neural Networks (Deep-CNN) appeared to be highly successful for feature extraction in the finger-vein area, and most of the proposed works focus on new Convolutional Neural Network (CNN) models, which require huge databases for training, a solution that may be more practicable in real world applications, is to reuse pretrained Deep-CNN models. In this paper, a finger-vein identification system is proposed, which uses Squeezenet pretrained Deep-CNN model as feature extractor from the left and the right finger vein patterns. Then, combines this Deep-based features by using a feature-level Discriminant Correlation Analysis (DCA) to reduce feature dimensions and to give the most relevant features. Finally, these composite feature vectors are used as input data for a Support Vector Machine (SVM) classifier, in an identification stage. This method is tested on two widely available finger vein databases, namely SDUMLA-HMT and FV-USM. Experimental results show that the proposed finger vein identification system achieves significant high mean accuracy rates.
The principal intention of this paper is to study face recognition across age progression at two levels: feature extraction and classification. In other words, this work aims to prove the benefit of replacing the Softmax layer of the Deep-Convolutional Neural Networks (CNN) by Extreme Learning Machine (ELM) classifier based on deep features computed from fully-connected layer of pre-trained AlexNet CNN model, in a context of age-invariant face recognition. Experimental results indicate that the ELM classifier combined with feature extracted by the pre-trained AlexNet CNN model worked effectively for face recognition across age progression. As significant highest mean accuracy rates are always obtained using ELM classifier. These results are more significant, following a 95% confidence level hypothesis test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.