Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Transient thyroid function abnormalities at birth exhibit intellectual developmental and cognitive disorders in adulthood. Given the well-known effects of physical activity and sex hormones on cognitive functions and brain-derived neurotrophic factor (BDNF), the present study examined the effects of treadmill exercise, sex hormones, and the combined treatment on learning and memory and hippocampal BDNF levels in transient congenital hypothyroid rats. To induce hypothyroidism, 6-propyl-2-thiouracil was added to the drinking water from the 6th day of gestation to the 21st postnatal day (PND). From PNDs 28 to 47, female and male pup rats received 17β-estradiol and testosterone, respectively, and about 30 min later, they were forced to run on the treadmill for 30 min once a day. On PNDs 48–55, spatial learning and memory of all rats tested in the water maze, which followed by measurement of BDNF in the hippocampus. Results showed that developmental hypothyroidism induced significant deficits in spatial learning and memory and hippocampal BDNF in both male and female rats. In both male and female hypothyroid rats, exercise and exercise plus sex hormones, but not sex hormones alone alleviated learning and memory deficits and all treatments (exercise, sex hormones, and the combined treatment) increased hippocampal BDNF. These disconnects in the effects of exercise, sex hormones and the combined treatment on behavioral and neurochemical outcomes suggest that a neurochemical mechanism other than hippocampal BDNF might contribute in the ameliorating effects of exercise on learning and memory deficits induced by developmental thyroid hormone insufficiency.
Introduction:
The long-term adverse effects of transient thyroid function abnormalities at birth on intellectual development are proven. The effect of exercise increases in the presence of sex hormones. The current study aimed at investigating the possibility that a combination of sex hormones and exercise has synergistic effects on neural plasticity in Transient Congenital Hypothyroidism (TCH) rats.
Methods:
To induce hypothyroidism in the mothers, Propylthiouracil (PTU) was added to drinking water (100 mg/L) on the 6th day of gestation and continued until the 21
st
Postnatal Day. From Postnatal Day (PND) 28 to 47, the female and male pups received 17β-estradiol and testosterone, respectively. The mild treadmill exercise began 30 minutes after the sex hormones or vehicle administration. On PND 48, electrophysiological experiments were performed on brain slices.
Results:
Increase of Long-Term Potentiation (LTP) was observed in sedentary-non-hormone female rats of TCH group, compared with that of the control. The exercise enhanced LTP in control rats, but the hormones showed no significant effect. The effect of exercise and sex hormone was not significant in the TCH group. The combination of exercise and testosterone enhanced LTP in TCH male rats, while the combination of exercise and estradiol or each of them individually did not produce such an effect on LTP in TCH female rats.
Conclusion:
The study findings showed an increase in excitatory transmission despite the returning of thyroid hormone levels to normal range in TCH female rats. Also a combination treatment including exercise and testosterone enhanced LTP in male rats of TCH group, which was a gender-specific event.
Hippocampal slices of mouse brain were used to estimate how selective agonist and antagonist of opioid receptors alter Low-Mg artificial cerebrospinal fluid (LM-ACSF)-induced epileptiform activities in normal and morphine-dependent mice. Brain slices were obtained from control and morphine-dependent mice. The morphine-dependent group received morphine once a day for 5 consecutive days, and the control group received saline. All injections were administered subcutaneously (s.c) in a volume of 0.1mL on postnatal days 14-18. Brain slices were perfused with LM-ACSF along with selective agonist and antagonist of μ, κ and δ opioid receptors. Changes in spike count per unit of time were used as indices to quantify the effects of LM-ACSF exposure in the slices. In both groups, DAMGO (selective μ opioid receptor agonist) and DPDPE (selective δ opioid receptor agonist) suppressed while Dyn-A (selective κ opioid receptor agonist) potentiated the epileptiform activity. Meanwhile, BFN-A (selective μ opioid receptor antagonist) recovered epileptiform activity in normal brain slices but not in morphine-dependent ones. NTI (selective δ opioid receptor antagonist) and nor-BNI (selective κ opioid receptor antagonist) decreased epileptiform activity. It seems that the excitatory effect of morphine on epileptiform activity was mediated through kappa receptors and its inhibitory effect was mediated via the mu receptor and, to a lesser degree, through the delta receptor. The pattern of effect was similar in normal and morphine-dependent slices, but the intensity of the effect was significantly stronger in normal mice. Finding of this study might be considered for further research and attention in epilepsy treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.