Background: Motor neuron disorders involving upper and lower neurons are a genetically and clinically heterogenous group of rare neuromuscular disorders with overlap among spinal muscular atrophies (SMAs) and amyotrophic lateral sclerosis (ALS). Classical SMA caused by recessive mutations in SMN1 is one of the most common genetic causes of mortality in infants. It is characterized by degeneration of anterior horn cells in the spinal cord, leading to progressive muscle weakness and atrophy. Non-SMN1-related spinal muscular atrophies are caused by variants in a number of genes, including VRK1, encoding the vaccinia-related kinase 1 (VRK1). VRK1 variants have been segregated with motor neuron diseases including SMA phenotypes or hereditary complex motor and sensory axonal neuropathy (HMSN), with or without pontocerebellar hypoplasia or microcephaly. Results: Here, we report an association of a novel homozygous splice variant in VRK1 (c.1159 + 1G>A) with childhood-onset SMA or juvenile lower motor disease with brisk tendon reflexes without pontocerebellar hypoplasia and normal intellectual ability in a family with five affected individuals. We show that the VRK1 splice variant in patients causes decreased splicing efficiency and a mRNA frameshift that escapes the nonsensemediated decay machinery and results in a premature termination codon. Conclusions: Our findings unveil the impact of the variant on the VRK1 transcript and further support the implication of VRK1 in the pathogenesis of lower motor neuron diseases.
Long noncoding RNAs (lncRNAs) are a group of noncoding cellular RNAs involved in significant biological phenomena such as differentiation, cell development, genomic imprinting, adjusting the enzymatic activity, regulating chromosome conformation, apoptosis, cell cycle, and cellular senescence. The misregulation of lncRNAs interrupting normal biological processes has been implicated in tumor formation and metastasis, resulting in cancer. Apoptosis and cell cycle, two main biological phenomena, are highly conserved and intimately coupled mechanisms. Hence, some cell cycle regulators can influence both programmed cell death and cell division. Apoptosis eliminates defective and unwanted cells, and the cell cycle enables cells to replicate themselves. The improper regulation of apoptosis and cell cycle contributes to numerous disorders such as neurodegenerative and autoimmune diseases, viral infection, anemia, and mainly cancer. Cellular senescence is a tumorsuppressing response initiated by environmental and internal stress factors. This phenomenon has recently attained more attention due to its therapeutic implications in the field of senotherapy. In this review, the regulatory roles of lncRNAs on apoptosis, cell cycle, and senescence will be discussed. First, the role of lncRNAs in mitochondrial dynamics and apoptosis is addressed. Next, the interaction between lncRNAs and caspases, pro/antiapoptotic proteins, and also EGFR/PI3K/PTEN/AKT/mTORC1 signaling pathway will be investigated. Furthermore, the effect of lncRNAs in the cell cycle is surveyed through interaction with cyclins, cdks, p21, and wnt/β-catenin/c-myc pathway. Finally, the function of essential lncRNAs in cellular senescence is mentioned.
The VDR f allele and f/f genotype are associated with BD in the Iranian Azari population.
Purpose Variants in genes encoding sarcomeric proteins are the most common cause of inherited cardiomyopathies. However, the underlying genetic cause remains unknown in many cases. We used exome sequencing to reveal the genetic etiology in patients with recessive familial cardiomyopathy. Methods Exome sequencing was carried out in three consanguineous families. Functional assessment of the variants was performed. Results Affected individuals presented with hypertrophic or dilated cardiomyopathy of variable severity from infantile- to early adulthood–onset and sudden cardiac death. We identified a homozygous missense substitution (c.170C>A, p.[Ala57Asp]), a homozygous translation stop codon variant (c.106G>T, p.[Glu36Ter]), and a presumable homozygous essential splice acceptor variant (c.482-1G>A, predicted to result in skipping of exon 5). Morpholino knockdown of the MYL3 orthologue in zebrafish, cmlc1 , resulted in compromised cardiac function, which could not be rescued by reintroduction of MYL3 carrying either the nonsense c.106G>T or the missense c.170C>A variants. Minigene assay of the c.482-1G>A variant indicated a splicing defect likely resulting in disruption of the EF-hand Ca 2+ binding domains. Conclusions Our data demonstrate that homozygous MYL3 loss-of-function variants can cause of recessive cardiomyopathy and occurrence of sudden cardiac death, most likely due to impaired or loss of myosin essential light chain function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.