This paper presents a model and simulation for the development of microgrids in remote areas of the Algerian Sahara, including micro power plants, photovoltaic panels, wind farms, diesel energy and storage facilities. The climate of the Algerian Sahara, located on both sides of a tropical region, is hot, sunny and arid. Daytime temperatures are very high and can exceed 50°C, while the thermal amplitude between day and night is often above 350 or 400°C. In addition, there are many microclimates that are characterised by very high wind speeds. This means that wind energy and photovoltaic energy are both widely appropriate in this field, especially if we assume that the distribution of the population is very dispersed. The creation of microgrids for consumption will be an interesting solution to provide energy to the local population. The microgrid is part of the electrical system and is very dynamic. Production and supply forecasts will lead to reshipment, demand and price effects on regional markets. These feedback effects must be modelled and understood to achieve a stable energy system based on renewable energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.