Manipulation of micro‐ and nanoparticles in complex biofluids is highly demanded in most biological and biomedical applications. A significant number of microfluidic platforms have been developed for inexpensive, rapid, accurate, and efficient particle manipulation. Due to the enormous potential of viscoelastic fluids (VEFs) for particle manipulation, various emerging microfluidic‐based VEFs techniques have been presented over the last decade. This review provides an intuitive understanding of VEF physics for particle separation in different microchannel geometries. Besides, active and passive VEF methods are critically reviewed, highlighting the potential and practical challenges of each technique for particle/cell focusing, sorting, and separation. The outcome of this study could enable recognizing deliverable VEF technology with the promising prospect in the manipulation of submicron biological samples (e.g., exosomes, DNA, and proteins).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.