Background: The mechanisms by which macrophage phenotype contributes to mesenchymal stem cells (MSC)mediated bone repair remain unclear. In this work, we investigated the influence of factors released by human macrophages polarized to a pro-inflammatory or an anti-inflammatory phenotype on the ability of human MSC to attach, migrate, and differentiate toward the osteoblastic lineage. We focused on the role of TNF-α and IL-10, key pro-inflammatory and anti-inflammatory cytokines, respectively, in regulating MSC functions. Methods: MSC were treated with media conditioned by pro-inflammatory or anti-inflammatory macrophages to study their influence in cell attachment, migration, and osteogenic differentiation. The involvement of TNF-α and IL-10 in the regulation of MSC functions was investigated using neutralizing antibodies and recombinant cytokines. Results: Treatment of MSC with media conditioned by pro-inflammatory or anti-inflammatory macrophages promoted cell elongation and enhanced MSC ability to attach and migrate. These effects were more noticeable when MSC were treated with media from pro-inflammatory macrophages. Interestingly, MSC osteogenic activity was enhanced by factors released by anti-inflammatory macrophages, but not by pro-inflammatory macrophages. Significant IL-10 levels originated from anti-inflammatory macrophages enhanced MSC osteogenesis by increasing ALP activity and mineralization in MSC layers cultured under osteogenic conditions. Moreover, macrophage-derived IL-10 regulated the expression of the osteogenic markers RUNX2, COL1A1, and ALPL. Notably, low TNF-α levels secreted by anti-inflammatory macrophages increased ALP activity in differentiating MSC whereas high TNF-α levels produced by pro-inflammatory macrophages had no effects on osteogenesis. Experiments in which MSC were treated with cytokines revealed that IL-10 was more effective in promoting matrix maturation and mineralization than TNF-α. Conclusions: Factors secreted by pro-inflammatory macrophages substantially increased MSC attachment and migration whereas those released by anti-inflammatory macrophages enhanced MSC osteogenic activity as well as cell migration. IL-10 was identified as an important cytokine secreted by anti-inflammatory macrophages that potentiates MSC osteogenesis. Our findings provide novel insights into how environments provided by macrophages regulate MSC osteogenesis, which may be helpful to develop strategies to enhance bone regeneration.
Aims To investigate whether idiopathic osteonecrosis of the femoral head (ONFH) is related to impaired osteoblast activities. Methods We cultured osteoblasts isolated from trabecular bone explants taken from the femoral head and the intertrochanteric region of patients with idiopathic ONFH, or from the intertrochanteric region of patients with osteoarthritis (OA), and compared their viability, mineralization capacity, and secretion of paracrine factors. Results Osteoblasts from the intertrochanteric region of patients with ONFH showed lower alkaline phosphatase (ALP) activity and mineralization capacity than osteoblasts from the same skeletal site in age-matched patients with OA, as well as lower messenger RNA (mRNA) levels of genes encoding osteocalcin and bone sialoprotein and higher osteopontin expression. In addition, osteoblasts from patients with ONFH secreted lower osteoprotegerin (OPG) levels than those from patients with OA, resulting in a higher receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) ligand (RANKL)-to-OPG ratio. In patients with ONFH, osteoblasts from the femoral head showed reduced viability and mineralized nodule formation compared with osteoblasts from the intertrochanteric region. Notably, the secretion of the pro-resorptive factors interleukin-6 and prostaglandin E2 as well as the RANKL-to-OPG ratio were markedly higher in osteoblast cultures from the femoral head than in those from the intertrochanteric region. Conclusion Idiopathic ONFH is associated with a reduced mineralization capacity of osteoblasts and increased secretion of pro-resorptive factors. Cite this article: Bone Joint Res 2021;10(9):619–628.
Mesenchymal stem cells (MSC) have potent immunomodulatory and regenerative effects via soluble factors. One approach to improve stem cell-based therapies is encapsulation of MSC in hydrogels based on natural proteins such as collagen and fibrin, which play critical roles in bone healing. In this work, we comparatively studied the influence of collagen and fibrin hydrogels of varying stiffness on the paracrine interactions established by MSC with macrophages and osteoblasts.Type I collagen and fibrin hydrogels in a similar stiffness range loaded with MSC from donants were prepared by modifying the protein concentration. Viability and morphology of MSC in hydrogels as well as cell migration rate from the matrices were determined. Paracrine actions of MSC in hydrogels were evaluated in co-cultures with human macrophages from healthy blood donors or with osteoblasts from bone explants of patients with osteonecrosis of the femoral head.Lower matrix stiffness resulted in higher MSC viability and migration. Cell migration rate from collagen hydrogels was higher than from fibrin matrices. The secretion of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E2 (PGE2) by MSC in both collagen and fibrin hydrogels increased with increasing matrix stiffness. Tumor necrosis factor-α (TNF-α) secretion by macrophages cultured on collagen hydrogels was lower than on fibrin matrices. Interestingly, higher collagen matrix stiffness resulted in lower secreted TNF-α while the trend was opposite on fibrin hydrogels. In all cases, TNF-α levels were lower when macrophages were cultured on hydrogels containing MSC than on empty gels, an effect partially mediated by PGE2. Finally, mineralization capacity of osteoblasts co-cultured with MSC in hydrogels increased with increasing matrix stiffness, although this effect was more notably for collagen hydrogels.Paracrine interactions established by MSC in hydrogels with macrophages and osteoblasts are regulated by matrix composition and stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.