Semi-alluvial stream channels eroded into till and other glacial sediments are common in areas of extensive glacial deposition such as the Great Lakes region and northern interior plains of North America. The mechanics of erosion and erosional weakness of till results in the dominance of fluvial scour and mass erosion due to spontaneous fracture at planes of weakness under shearing flow. There have been few controlled tests looking at erosional mechanisms and resistance of till in river channels. We subjected small blocks of till to unidirectional flows in a laboratory flume to measure the threshold shear stress for erosion and observed the erosion mechanics. Critical shear stress for erosion varied from 7 to 8 Pa for samples with initial saturated moisture content in which a combination of fluvial scour and mass cracking/block erosion dominated. When dried, micro-fissures occurred in the sample and erosional resistance of the till was extremely low at <1 Pa with erosion appearing to be by fluvial scour. When mobile gravel was added to the test conditions, the gravel reduced the erosion threshold slightly because of the enhanced scour around and below the gravel particles and the tendency for the gravel to aid in crack enlargement. Thus a partial or thin gravel cover over the till may provide no protection from erosion. The erosion processes and effects reflect the complex and contingent mechanics and properties of till, and suggest that the erosion characteristics of till bed semi-alluvial channels differ from abrasion or plucking dominated processes in more resistant bedrock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.