The transportation industry now accounts for approximately a quarter of worldwide energy-related direct CO2 emissions, and governments all around the globe have committed to converting their fossil-fuel vehicles to zero-emission ones by adopting electric vehicles. Current electric vehicles (EV) can store approximately 18 to 100 kWh of energy, which may be employed not only for commuting but also for other purposes such as delivering energy to households (V2H) or buildings (V2B), as well as offering ancillary services to the power grid (V2G). In this study, a real test setting including a trending bidirectional charger, an EV, a PV simulator, and household appliances are utilized to evaluate the performance of various V2H components and to learn about the concerns that may arise during V2H operation. The results of the tests on the bidirectional EV charger are presented in this paper. Although the results of the tests on the charger installed in the house are not satisfactory and consistent to the project’s goal, they are released in order to aid future studies in better understanding the true challenges of commercial bidirectional chargers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.