Idarubicin, Z HER2 affibody, Idarubicin-Z HER2 affibody conjugate, Ovarian Cancer Scan to discover onlineBackground & Objective: Overexpression of human epidermal growth factor receptor 2 (HER2) causes cell transformation and development of various types of malignancies. Idarubicin is an effective anti-neoplastic drug but its specific delivery to the targeted cells is still a great challenge. Affibody as a cost-effective peptide molecule with low molecular weight has a high affinity for HER2 receptors. Breast and ovarian cancers as wide speared types of malignancies are associated with high expression of HER2. In the current study, we assessed the cytotoxic effects of idarubicin-ZHER2 affibody conjugate on the positive-HER2 cancer cell lines.Methods: The cytotoxic effects of constructed idarubicin-ZHER2 affibody conjugate on the SK-BR-3, SK-OV-3, and MCF-7 cells with various levels of HER2 expression were evaluated by MTT assay following 48 hours of incubation.Results: Idarubicin showed a potent and dose-dependent cytotoxic effect against all treated cell lines while the SK-OV-3 cells were significantly more sensitive. The dimeric form of the ZHER2 affibody molecule showed a mild effect on the cell viability of all treated cells at its optimum concentration. The constructed Idarubicin-ZHER2 affibody conjugate decreased the viability of SK-OV-3 cells at its optimal concentration, more efficiently and specifically than other treated cells. Conclusion:The ZHER2-affibody conjugate of idarubicin has a more specific cytotoxic effect compared with idarubicin alone against HER2-overexpressing ovarian cancerous cells. It appears the ZHER2-affibody conjugate of idarubicin has great potential to be implicated as an innovative anti-cancer agent in future clinical trials in patients with HER2-overexpressing ovarian cancer.
Targeting of cancerous cells with a high level of human epidermal growth factor receptor 2 (HER2) expressions by drug immunoconjugates is a new approach for specific delivery of chemotherapeutic agents. Our previous work indicated that idarubicin-ZHER2 affibody conjugate has a great potential for the treatment of HER2-overexpressing malignant cell lines but possible induced immune response against constructed conjugate was not addressed. In the current study, the possibility of induction of humoral and cellular immune responses against idarubicin-ZHER2 affibody conjugate in BALB/c mice was investigated. For assessment of the induced immune response, prepared and qualified idarubicin-ZHER2 affibody conjugate was administrated intravenously to BALB/c mice and the induced cellular immune response was evaluated by measuring secretion levels of interferon gamma (IFN-γ) and interleukin 10 (IL-10) cytokines by the splenocytes. Humoral response of treated mice was also assessed by measuring total immunoglobulin G (IgG) titer in mice sera. The obtained results showed that idarubicin-ZHER2 affibody conjugate at any examined concentrations could not induce secretion of IFN-γ as a pro-inflammatory cytokine. A mild increase in the level of regulatory IL-10 cytokine was seen in the treated mice although no dose dependency in the level of IL-10 production was observed. Furthermore, results showed that idarubicin-ZHER2 conjugate could not induce IgG production in the treated mice. Based on these findings, the idarubicin-ZHER2 conjugate can be considered as a candidate for the development of new therapeutics against HER2-overexpressing cancers although further in vivo studies are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.