Lignocellulosic biomass is a renewable resource used to produce energy, fuels, and chemicals. This study aimed to determine the effect of pyrolysis temperature on product yield and product characterization of bio-oil. In this study, palm shells were selected and prepared as raw materials for bio-oil production. Palm shells were first soaked in 10% HCl and then pyrolyzed at temperatures of 300 oC, 350 oC, 400 oC, and 450 oC in a fixed bed reactor. Afterward, the reactor will emit smoke which later will condense into bio-oil. The experimental results show that a temperature of 450 oC will be a better choice for higher bio-oil yields (44.59%). The characteristics of the bio-oil obtained are density (905 – 1015.17 kg/m3), Kinematic Viscosity (1.21 – 1.5 mm2/s), and flash point (60 – 68.7 oC).
The aim of the study was to determine the environmental potential impact of the palm shell biofuel production process using life cycle assessment (LCA) through gate to gate approach. The environmental impact of each scenario was assessed using ISO 14040 (2006), which includes goal and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA) and interpretation. The simapro v.9 software with ecoinvent 3.5 database was utilized to assess the environmental effect. The impact analysis method used is Impact 2002+. Functional units were used to show environmental references in damage assessment and characterization, such as energy use and global warming potential. The results show that the environmental impact evaluation obtained through LCA for the entire biofuel production process stated that the thermal cracking stage resulted in the highest global warming impact, compared to other processes, which was 118.374 kg CO 2 eq. For the categories of human health, ecosystem quality, and climate change, each has a value of 0.0001 DALY; 15.708 PDF•m 2 •yr; and 335.233 kg CO 2 eq where this value is the total damage assessment of the entire biofuel production process. From the results of the analysis by utilizing the networking graph on the simapro application, it can be seen that the environmental hotspot of the thermal cracking process of biofuel production is due to the use of electricity from the State Electricity Company (PLN) and the release of chemical substances from the process. To improve the environmental performance of biofuel production process, additional development steps are required to increase biofuel yield, purification efficiency of biofuel to obtain pure liquid fuel, and the use of renewable energy sources to generate electricity. Additionally, more particular data would be required for a more precise LCA study result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.