Most persons with confirmed H7N9 virus infection had severe lower respiratory tract illness, were epidemiologically unrelated, and had a history of recent exposure to poultry. However, limited, nonsustained human-to-human H7N9 virus transmission could not be ruled out in four families.
Over the past two decades, the solid–electrolyte interphase (SEI) layer that forms on an electrode’s surface has been believed to be pivotal for stabilizing the electrode’s performance in lithium-ion batteries (LIBs). However, more and more researchers currently are realizing that the metal-ion solvation structure (e.g., Li+) in electrolytes and the derived interfacial model (i.e., the desolvation process) can affect the electrode’s performance significantly. Thus, herein we summarize recent research focused on how to discover the importance of an electrolyte’s solvation structure, develop a quantitative model to describe the solvation structure, construct an interfacial model to understand the electrode’s performance, and apply these theories to the design of electrolytes. We provide a timely review on the scientific relationship between the molecular interactions of metal ions, anions, and solvents in the interfacial model and the electrode’s performance, of which the viewpoint differs from the SEI interpretations before. These discoveries may herald a new, post-SEI era due to their significance for guiding the design of LIBs and their performance improvement, as well as developing other metal-ion batteries and beyond.
Semiconductor-based photocatalytic H2 generation as a direct approach of converting solar energy to fuel is attractive for tackling the global energy and environmental issues but still suffers from low efficiency. Here, we report a MoS2/CdS nanohybrid as a noble-metal-free efficient visible-light driven photocatalyst, which has the unique nanosheets-on-nanorod heterostructure with partially crystalline MoS2 nanosheets intimately but discretely growing on single-crystalline CdS nanorod. This heterostructure not only facilitates the charge separation and transfer owing to the formed heterojunction, shorter radial transfer path, and fewer defects in single-crystalline nanorod, thus effectively reducing the charge recombination, but also provides plenty of active sites for hydrogen evolution reaction due to partially crystalline structure of MoS2 as well as enough room for hole extraction. As a result, the MoS2/CdS nanosheets-on-nanorod exhibits a state-of-the-art H2 evolution rate of 49.80 mmol g(-1) h(-1) and an apparent quantum yield of 41.37% at 420 nm, which is the advanced performance among all MoS2/CdS composites and CdS/noble metal photocatalysts. These findings will open opportunities for developing low-cost efficient photocatalysts for water splitting.
Introduction The coronavirus disease (COVID‐19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), which play important roles in regulating gene expression and are also considered as essential modulators during viral infection. The aim of this study was to elucidate the differential expression of miRNAs in COVID‐19. Methods The total RNA was extracted and purified from the peripheral blood of ten patients with COVID‐19 and four healthy donors. The expression levels of various miRNAs were detected by high‐throughput sequencing, and correlation analysis was performed on the target genes that are primed by miRNAs. Key findings Compared with the healthy controls, 35 miRNAs were upregulated and 38 miRNAs were downregulated in the human patients with COVID‐19. The top 10 genes were listed below: hsa‐miR‐16‐2‐3P,hsa‐miR‐5695,hsa‐miR‐10399‐3P,hsa‐miR‐6501‐5P,hsa‐miR‐361‐3P,hsa‐miR‐361‐3p, hsa‐miR‐4659a‐3p, hsa‐miR‐142‐5p, hsa‐miR‐4685‐3p, hsa‐miR‐454‐5p, and hsa‐miR‐30c‐5p. The 10 genes with the greatest reduction were listed below: hsa‐miR‐183‐5p, hsa‐miR‐627‐5p, hsa‐miR‐941, hsa‐miR‐21‐5p, hsa‐miR‐20a‐5p, hsa‐miR‐146b‐5p, hsa‐miR‐454‐3p, hsa‐miR‐18a‐5p, hsa‐miR‐340‐5p, and hsa‐miR‐17‐5p. Remarkably, miR‐16‐2‐3p was the most upregulated miRNA, with a 1.6‐fold change compared to that of the controls. Moreover, the expression of miR‐6501‐5p and miR‐618 was 1.5‐fold higher in the COVID‐19 patients than in the healthy donors. Meanwhile, miR‐627‐5p was the most downregulated miRNA, with a 2.3‐fold change compared to that of the controls. The expression of other miRNAs (miR‐183‐5p, miR‐627‐5p, and miR‐144‐3p) was reduced by more than 1.3‐fold compared to that of the healthy donors. Cluster analysis revealed that all of the differentially expressed miRNA target genes were clustered by their regulation of cellular components, molecular functions, and biological processes. Importantly, peptidases, protein kinases, and the ubiquitin system were shown to be the highest enrichment categories by enrichment analysis. Conclusions The differential miRNA expression found in COVID‐19 patients may regulate the immune responses and viral replication during viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.