Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands-farmland suboptimal for food cropscould help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks-primarily annual grain crops-on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services.energy policy | greenhouse gas mitigation I n agricultural landscapes, balancing the provisioning of food and energy with maintenance of biodiversity and ecosystem functions is a global challenge. To avoid impacts on food production, attention is increasingly being focused on the potential for marginal lands to support bioenergy production (1). Marginal lands, those suboptimal for food production, may consist of relatively small areas within generally productive landscapes or larger regions where conditions generally limit crop productivity. However, there is increasing recognition that these lands are already performing a variety of useful functions, and their conversion to bioenergy cropping could reduce these services. For example, in the north central United States, rising commodity prices are predicted to bring marginal croplands-including Conservation Reserve Program lands-into annual crop production with negative impacts on wildlife habitat and water quality (2, 3). With 2013 corn plantings at recent record highs (4) and new reports of grassland and wetland conversion to cropland (5, 6), this may be occurring already.An alternative to annual cropping is conversion of marginal croplands to perennial, cellulosic crops for bioenergy. Although current US biofuel production centers on grain ethanol derived from annual monocultures of maize (Zea mays), this situation could change with full implementation of the 2007 US Energy Independence and Security Act (7), which calls for increased production of cellulosic biofuels. In the Midwest United States, perennial grasses a...
Climate change models predict more frequent and severe droughts in the humid tropics. How drought will impact tropical forest carbon and greenhouse gas dynamics is poorly understood. Here we report the effects of the severe 2015 Caribbean drought on soil moisture, oxygen, phosphorus (P), and greenhouse gas emissions in a humid tropical forest in Puerto Rico. Drought significantly decreases inorganic P concentrations, an element commonly limiting to net primary productivity in tropical forests, and significantly increases organic P. High-frequency greenhouse gas measurements show varied impacts across topography. Soil carbon dioxide emissions increase by 60% on slopes and 163% in valleys. Methane (CH4) consumption increases significantly during drought, but high CH4 fluxes post-drought offset this sink after 7 weeks. The rapid response and slow recovery to drought suggest tropical forest biogeochemistry is more sensitive to climate change than previously believed, with potentially large direct and indirect consequences for regional and global carbon cycles.
Cellulosic biofuels are intended to improve future energy and climate security. Nitrogen (N) fertilizer is commonly recommended to stimulate yields but can increase losses of the greenhouse gas nitrous oxide (N 2 O) and other forms of reactive N, including nitrate. We measured soil N 2 O emissions and nitrate leaching along a switchgrass (Panicum virgatum) high resolution N-fertilizer gradient for three years post-establishment. Results revealed an exponential increase in annual N 2 O emissions that each year became stronger (R 2 >0.9, P<0.001) and deviated further from the fixed percentage assumed for IPCC Tier 1 emission factors. Concomitantly, switchgrass yields became less responsive each year to N fertilizer. Nitrate leaching (and calculated indirect N 2 O emissions) also increased exponentially in response to N inputs, but neither methane (CH 4 ) uptake nor soil organic carbon changed detectably. Overall, N fertilizer inputs at rates greater than crop need curtailed the climate benefit of ethanol production almost two-fold, from a maximum mitigation capacity of −5.71±0.22 Mg CO 2 e ha −1 yr −1 in switchgrass fertilized at 56 kg N ha −1 to only −2.97±0.18 Mg CO 2 e ha −1 yr −1 in switchgrass fertilized at 196 kg N ha −1 . Minimizing N fertilizer use will be an important strategy for fully realizing the climate benefits of cellulosic biofuel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.