Internet of People (IoP), which focuses on personal information collection by a wide range of the mobile applications, is the next frontier for Internet of Things (IoT). Nowadays, people become more and more dependent on the Internet, increasingly receiving and sending information on social networks (e.g., Twitter, etc.); thus social networks play a decisive role in IoP. Therefore, community discovery has emerged as one of the most challenging problems in social networks analysis. To this end, many algorithms have been proposed to detect communities in static networks. However, microblogging social networks are extremely dynamic in both content distribution and topological structure. In this paper, we propose a model for Efficient Evolutionary User Interest Community Discovery which employs a nature-inspired genetic algorithm to improve the quality of community discovery. Specifically, a preprocessing method based on Hypertext Induced Topic Search improves the quality of initial users and posts, and a label propagation method is used to restrict the conditions of the mutation process to further improve the efficiency and effectiveness of user interest community detection. Finally, the experiments on the real datasets validate the effectiveness of the proposed model.
Community detection in microblogging environment has become an important tool to understand the emerging events. Most existing community detection methods only use network topology of users to identify optimal communities. These methods ignore the structural information of the posts and the semantic information of users' interests. To overcome these challenges, this paper uses User Interest Community Detection model to analyze text streams from microblogging sites for detecting users' interest communities. We propose HITS Latent Dirichlet Allocation model based on modified Hypertext Induced Topic Search and Latent Dirichlet Allocation to distil emerging interests and high-influence users by reducing negative impact of non-related users and its interests. Moreover, we propose HITS Label Propagation Algorithm method based on Label Propagation Algorithm and Collaborative Filtering to segregate the community interests of users more accurately and efficiently. Our experimental results demonstrate the effectiveness of our model on users' interest community detection and in addressing the data sparsity problem of the posts.
Microblogging, networks have gained popularity in recent years as a platform enabling expressions of human emotions, through which users can conveniently produce contents on public events, breaking news, and/or products. Subsequently, microblogging networks generate massive amounts of data that carries opinions and mass sentiment on various topics. Herein, microblogging is regarded as a useful platform for detecting and propagating new hot events. It is also a useful channel for identifying high-quality posts, popular topics, key interests, and high-influence users. The existence of noisy data in the traditional social media data streams enforces to focus on human-centric computing. This paper proposes a Human-centric Social Computing (HCSC) model for hot event detection and propagation in microblogging networks. In the proposed HCSC model, all posts and users are pre-processed through Hypertext Induced Topic Search (HITS) for determining high-quality subsets of the users, topics, and posts. Then, a Latent Dirichlet Allocation (LDA) based multi-prototype user topic detection method is used for identifying users with high influence in the network. Further, an influence maximization is used for final determination of influential users based on the user subsets. Finally, the users mined by influence maximization process are generated as the influential user sets for specific topics. Experimental results prove the superiority of our HCSC model against similar models of hot event detection and information propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.