The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.
Per- and poly fluorinated alkyl substances (PFASs), notably perfluorooctanoic acid (PFOA), contaminate many ground and surface waters and are environmentally persistent. The performance limitations of existing remediation methods motivate efforts to develop effective adsorbents. Here we report a β-cyclodextrin (β-CD)-based polymer network with higher affinity for PFOA compared to powdered activated carbon, along with comparable capacity and kinetics. The β-CD polymer reduces PFOA concentrations from 1 μg L to <10 ng L, at least 7 times lower than the 2016 U.S. EPA advisory level (70 ng L), and was regenerated and reused multiple times by washing with MeOH. The performance of the polymer is unaffected by humic acid, a component of natural organic matter that fouls activated carbons. These results are promising for treating PFOA-contaminated water and demonstrate the versatility of β-CD-based adsorbents.
Per-and polyfluorinated alkyl substances (PFAS), such as perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and ammonium perfluoro-2-propoxypropionate (GenX), contaminate ground and surface waters throughout the world. The cost and performance limitations of current PFAS removal technologies motivate efforts to develop selective and high-affinity adsorbents. Covalent organic frameworks (COFs) are unexplored yet promising adsorbents because of their high surface area and tunable pore sizes. Here we show that imine-linked two-dimensional (2D) COFs bearing primary amines adsorb GenX rapidly at environmentally relevant concentrations. COFs with partial amine incorporation showed the highest capacity and fastest removal, suggesting that the synergistic combination of the polar group and hydrophobic surfaces are responsible for GenX binding. A COF with 28% amine loading also removed more than 90% of 12 out of 13 PFAS. These results demonstrate the promise of COFs for PFAS removal and suggest design criteria for maximizing adsorbent performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.