Central carbon segregation is a typical internal defect of continuous cast steel billets. Real-time and accurate carbon segregation prediction is of great significance for lean control of the production quality in continuous casting processes. In this paper, a data-driven regularized extreme learning machine (R-ELM) model is proposed for the prediction of carbon segregation index (CSI). To improve model performance, outliers in industrial data were eliminated by means of boxplot tool. Besides, Pearson correlation combined with grey relational analysis (GRA) was conducted to avoid multicollinearity and redundancy in input variables. The new model shows potential to evaluate online quality of steel billets. When predictive errors were within ±0.03 and ±0.025, the prediction accuracy of the R-ELM model was 94% and 89%, respectively, which was higher than that of the multiple linear regression (MLR) model and ELM model. Moreover, the effects of several key continuous casting process parameters on CSI were investigated based on the predictions of the R-ELM model via response surface analysis. The conclusions are consistent with the metallurgical mechanism, and the predictive values of the R-ELM model agree well with experimental values, which further verifies the correctness and generalization ability of the R-ELM model.
The accurate prediction of internal cracks in steel billets is of great importance for the stable production of continuous casting. However, it is challenging, owing to the strong nonlinearity, and coupling among continuous casting process parameters. In this study, an internal crack prediction model based on the principal component analysis (PCA) and deep neural network (DNN) was proposed by collecting sufficient industrial data. PCA was used to reduce the dimensionality of the factors influencing the internal cracks, and the obtained principal components were used as DNN input variables. The 5-fold cross-validation results demonstrate that the prediction accuracy of the DNN model is 92.2%, which is higher than those of the decision tree (DT), extreme learning machine (ELM), and backpropagation (BP) neural network models. Moreover, the variance analysis showed that the prediction results of the DNN model were more stable. The PCA-DNN model can provide a useful reference for real production, owing to its strong learning ability and fault-tolerant ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.