While almost any kind of face mask offers some protection against particles and pathogens of different sizes, the most efficient ones make use of a layered structure where one or...
Electrostatic properties and stability of charged virus-like nano-shells are examined in ionic solutions with monovalent and multivalent ions. A theoretical model based on a thin charged spherical shell and multivalent ions within the "dressed multivalent ion" approximation, yielding their distribution across the shell and the corresponding electrostatic (osmotic) pressure acting on the shell, is compared with extensive implicit Monte-Carlo simulations. It is found to be accurate for positive or low negative surface charge densities of the shell and for sufficiently high (low) monovalent (multivalent) salt concentrations. Phase diagrams involving electrostatic pressure exhibit positive and negative values, corresponding to an outward and an inward facing force on the shell, respectively. This provides an explanation for the high sensitivity of viral shell stability and self-assembly of viral capsid shells on the ionic environment.
We investigate electrostatic stability of charged droplets, modeled as permeable, charged spheres, and their encapsidation in thin, arbitrarily charged nano-shells, immersed in a neutralizing asymmetric electrolyte background. The latter consists of a small concentration of mobile multivalent counterions in a bathing solution of monovalent (positive and negative) ions. We use extensive Monte-Carlo simulations to investigate the spatial distribution of multivalent counterions and the electrostatic component of their osmotic pressure on the bounding surface of the spherical nano-shell. The osmotic pressure can be negative (inward pressure), positive (outward pressure) or zero, depending on the system parameters such as the charge density of the droplet, the charge density of the shell, and the electrolyte screening, which thus determine the stability of the nano-container. The counter-intuitive effects of multivalent counterions comprise the increased stability of the charged droplet with larger charge density, increased stability in the case of encapsidating shell of charge density of the same sign as the charged droplet, as well as the possibility to dispense altogether with the encapsidating shell, its confining effect taken over by the multivalent counterions. These dramatic effects are in stark contrast to the conventional mean-field picture, which in particular implies that a more highly charged spherical droplet should be electrostatically less stable because of its larger (repulsive) self-energy.
Protein folding in confined media has attracted wide attention over the past decade due to its importance in both in vivo and in vitro applications. Currently, it is generally believed that protein stability increases by decreasing the size of the confining medium, if its interaction with the confining walls is repulsive, and that the maximum folding temperature in confinement occurs for a pore size only slightly larger than the smallest dimension of the folded state of a protein. Protein stability in pore sizes, very close to the size of the folded state, has not however received the attention that it deserves. Using detailed, 0.3-ms-long molecular dynamics simulations, we show that proteins with an α-helix native state can have an optimal folding temperature in pore sizes that do not affect the folded-state structure. In contradiction to the current theoretical explanations, we find that the maximum folding temperature occurs in larger pores for smaller α-helices. In highly confined pores the free energy surface becomes rough, and a new barrier for protein folding may appear close to the unfolded state. In addition, in small nanopores the protein states that contain the β structures are entropically stabilized, in contrast to the bulk. As a consequence, folding rates decrease notably and the free energy surface becomes rougher. The results shed light on many recent experimental observations that cannot be explained by the current theories, and demonstrate the importance of entropic effects on proteins' misfolded states in highly confined environments. They also support the concept of passive effect of chaperonin GroEL on protein folding by preventing it from aggregation in crowded environment of biological cells, and provide deeper clues to the α → β conformational transition, believed to contribute to Alzheimer's and Parkinson's diseases. The strategy of protein and enzyme stabilization in confined media may also have to be revisited in the case of tight confinement. For in silico studies of protein folding in confined media, use of non-Go potentials may be more appropriate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.