A study of the decomposition behaviour for Ammonium Perchlorate(AP) was carried out by differential thermal analysis and the two decomposition peaks were observed. The high temperature peak was found to shift to lower temperatures, but the corresponding shift in the low temperature peak was smaller due to the effect of nanometer metal powders. Results shows that Cu and NiCu nanopowders decreased both the high and low decomposition temperature, while Ni and Al nanopowders just decreased the high decomposition temperature and increased the low decomposition temperature. Metal micron‐sized powders show catalytic effects on the thermal decomposition of AP, but their effects are less than that of nanometer metal powders. With the increase in content, nanometer metal powders enhanced their catalytic effect on the high temperature decomposition of AP, however their effect was weakened on the low temperature decomposition.
Poly(lactic acid) (PLA) was modified using collagen through a grafting method to improve its biocompatibility and degradability. The carboxylic group at the open end of PLA was transferred into the reactive acylchlorided group by a reaction with phosphorus pentachloride. Then, collagen-modified PLA (collagen-PLA) was prepared by the reaction between the reactive acylchlorided group and amino/hydroxyl groups on collagen. Subsequently, the structure of collagen-PLA was confirmed by Fourier transform infrared spectroscopy, fluorescein isothiocyanate-labeled fluorescence spectroscopy, X-ray photoelectron spectroscopy, and DSC analyses. Finally, some properties of collagen-PLA, such as hydrophilicity, cell compatibility and degradability were characterized. Results showed that collagen had been grafted onto the PLA with 5% graft ratio. Water contact angle and water absorption behavior tests indicated that the hydrophilicity of collagen-PLA was significantly higher than that of PLA. The cell compatibility of collagen-PLA with mouse embryonic fibroblasts (3T3) was also significantly better than PLA in terms of cell morphology and cell proliferation, and the degradability of PLA was also improved after introducing collagen. Results suggested that collagen-PLA was a promising candidate for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.