Permineralized fossils of the terminal Proterozoic (600–550 Ma) Doushantuo Formation, China, provide an unusually clear window on biological diversity just before the Ediacaran radiation. In the eastern Yangtze Gorges region, cherts in lower and upper Doushantuo carbonates preserve prokaryotes and protists from subtidal marine environments below and above fair weather wave base, respectively. Phosphorites in the Weng'an district to the south contain diverse acanthomorphic acritarchs as well as cellularly preserved thalloid algae. Twelve taxa of probable cyanobacteria are recognized. None is endemic to the Doushantuo Formation, and most have long stratigraphic ranges. The apparent restriction of two species to late Neoproterozoic and Cambrian rocks may reflect secular variation in taphonomic circumstance rather than evolution. Thirty-one species of spheromorphic and acanthomorphic acritarchs are recognized, about half of which occur elsewhere in rocks of the same approximate age. At least some of the eight formally described species of multicellular algae can be assigned with confidence to the Rhodophyta; these fossils provide a glimpse of structural and reproductive diversity in Neoproterozoic algae that is, to date, unique. Several reports of Doushantuo animal fossils have been published; most compelling are triact spicules identified in chert nodules. Along with more than two dozen taxa of compressed macrofossils preserved in carbonaceous shales from the top of the formation, Doushantuo permineralizations indicate that large animals radiated into a world rich in prokaryotic, protistan, and, even, multicellular diversity.
Phosphatized microfossils in the Ediacaran (635-542 Myr ago) Doushantuo Formation, south China, have been interpreted as the embryos of early animals. Despite experimental demonstration that embryos can be preserved, microstructural evidence that the Doushantuo remains are embryonic and an unambiguous record of fossil embryos in Lower Cambrian rocks, questions about the phylogenetic relationships of these fossils remain. Most recently, some researchers have proposed that Doushantuo microfossils may be giant sulphur-oxidizing bacteria comparable to extant Thiomargarita sp. Here we report new observations that provide a test of the bacterial hypothesis. The discovery of embryo-like Doushantuo fossils inside large, highly ornamented organic vesicles (acritarchs) indicates that these organisms were eukaryotic, and most probably early cleavage stage embryos preserved within diapause egg cysts. Large acanthomorphic microfossils of the type observed to contain fossil embryos first appear in rocks just above a 632.5 +/- 0.5-Myr-old ash bed, suggesting that at least stem-group animals inhabited shallow seas in the immediate aftermath of global Neoproterozoic glaciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.