Background. HER-2 is a key molecule serving as the therapeutic target, prognostic biomarker, and classification marker in breast cancer. Accurate microRNA profilings had not been conducted in purified tumor cells of HER-2-negative and HER-2-positive tissue specimens obtained from breast cancer patients. Methods. (i) Differential expression microRNA discovery using laser capture microdissection- (LCM-) assisted specimen preparation and microRNA array chips on HER-2 overexpressing and triple-negative breast carcinoma (TNBC) subtype tissues, (ii) differential expression microRNA validation by quantitative real-time PCR, and (iii) independent validation on tissue microarray. Results. Five microRNAs (miR-20a-5p, miR-221-3p, miR-362-5p, miR-502-3p, and miR-222-3p) were screened and validated as upregulated microRNAs in TNBC cells comparing to HER-2 overexpressing cells using a microRNA array (5 cases in each group) and quantitative real-time PCR (20 cases in each group). The expression difference of miR-362-5p had the most significant statistical significance (p=0.0016) among the five microRNAs. The expression of miR-362-5p and its target gene Sema3A was further analyzed using in situ hybridization (ISH) and immunohistochemistry on standard tissue sections (n=150). 70.8% of HER-2-negative cells showed moderate expression of miR-362-5p whereas 20.4% HER-2-negative cells correlated with strong expression of miR-362-5p (p<0.0001). The proportion of patients with moderate/strong miR-362-5p expression in luminal, HER-2 overexpressing, and TNBC subtypes were 53.2%, 22.2%, and 74.3%, respectively (p=0.0002). High miR-362-5p expressers had shorter overall survival in the univariate analysis (p=0.046). There was a significant negative correlation between miR-362-5p and Sema3A expression (p<0.0001). The patients with negative/weak Sema3A protein expression had poorer prognosis than those with moderate (HR: 3.723, p=0.021) or strong (HR: 3.966, p=0.013) Sema3A protein expression in the multivariate analysis. Conclusions. miR-362-5p/Sema3A might provide a promising therapeutic pathway and represents a candidate therapeutic target of the TNBC subtype.
Background and objectiveA considerable number of pregnant women who were supplemented with folate and vitamin B12 were selected as major participants in studying the one-carbon metabolic (OCM) pathway. Our study aimed to explore the effects of OCM-related indicators on pregnancy-induced hypertension (PIH) and preeclampsia (PE) in pregnant women with folate and vitamin B12 supplementation.Subjects and methodsA total of 1,178 pregnant women who took multivitamin tablets containing 800 μg folate and 4 μg vitamin B12 daily from 3 months before pregnancy to 3 months after pregnancy were enrolled in this study. These pregnant women were classified into three groups: the normotensive group (n = 1,006), the PIH group (n = 131), and the PE group (n = 41). The information on age, weight, body mass index (BMI), number of embryos, gravidity, parity, and OCM-related indicators (serum level of homocysteine, folate, and vitamin B12; MTHFR C677T genotype) was collected.ResultsThe accuracy of the prediction model based on the screened independent risk factors (hyperhomocysteine, OR = 1.170, 95% CI = 1.061–1.291; high folate status, OR = 1.018, 95% CI = 0.999–1.038; and high BMI, OR = 1.216, 95% CI = 1.140–1.297) for PIH in subjects with MTHFR CC genotype (AUC = 0.802) was obviously higher than that in subjects with MTHFR CT, TT genotype (AUC = 0.684,0.685, respectively) by receiver operating characteristic curve analysis. The homocysteine level of the PIH group was significantly higher than that of the normotensive group only in subjects with the MTHFR CC genotype (p = 0.005). A negative correlation between homocysteine and folate appeared in subjects with MTHFR CT + TT genotype (p = 0.005). A model including multiple embryos, nulliparas, and lower folate could predict the process from PIH to PE (AUC = 0.781, p < 0.0001).ConclusionThe prediction model composed of homocysteine, folate, and BMI for PIH was suitable for subjects with MTHFR CC genotype in pregnant women with supplementation of folate and vitamin B12. Lower folate levels could be an independent risk factor in developing the process from PIH to PE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.