The Ski oncoprotein dramatically affects cell growth, differentiation, and/or survival. Recently, Ski was shown to act in distinct signaling pathways including those involving nuclear receptors, transforming growth factor , and tumor suppressors. These divergent roles of Ski are probably dependent on Ski's capacity to bind multiple partners with disparate functions. In particular, Ski alters the growth and differentiation program of erythroid progenitor cells, leading to malignant leukemia. However, the mechanism underlying this important effect has remained elusive. Here we show that Ski interacts with GATA1, a transcription factor essential in erythropoiesis. Using a Ski mutant deficient in GATA1 binding, we show that this Ski-GATA1 interaction is critical for Ski's ability to repress GATA1-mediated transcription and block erythroid differentiation. Furthermore, the repression of GATA1-mediated transcription involves Ski's ability to block DNA binding of GATA1. This finding is in marked contrast to those in previous reports on the mechanism of repression by Ski, which have described a model involving the recruitment of corepressors into DNA-bound transcription complexes. We propose that Ski cooperates in the process of transformation in erythroid cells by interfering with GATA1 function, thereby contributing to erythroleukemia.
Breast cancer is a very heterogeneous disease, and ~30% of breast cancer patients succumb to metastasis, highlighting the need to understand the mechanisms of breast cancer progression in order to identify new molecular targets for treatment. Sphingosine kinase 1 (SK1) has been shown to be upregulated in patients with breast cancer, and several studies have suggested its involvement in breast cancer progression and/or metastasis, mostly based on cell studies. In this work we evaluated the role of SK1 in breast cancer development and metastasis using a transgenic breast cancer model, mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT), that closely resembles the characteristics and evolution of human breast cancer. The results show that SK1 deficiency does not alter tumor latency or growth, but significantly increases the number of metastatic lung nodules and the average metastasis size in the lung of MMTV-PyMT mice. Additionally, analysis of Kaplan-Meier plotter of human disease shows that high SK1 mRNA expression can be associated with a better prognosis for breast cancer patients. These results suggest a metastasis-suppressing function for SK1 in the MMTV-PyMT model of breast cancer, and that its role in regulating human breast cancer progression and metastasis may be dependent on the breast cancer type.
A high-fat diet (HFD) and obesity are risk factors for many diseases including breast cancer. This is particularly important with close to 40% of the current adult population being overweight or obese. Previous studies have implicated that Mediterranean diets (MDs) partially protect against breast cancer. However, to date, the links between diet and breast cancer progression are not well defined. Therefore, to begin to define and assess this, we used an isocaloric control diet (CD) and two HFDs enriched with either olive oil (OOBD, high in oleate, and unsaturated fatty acid in MDs) or a milk fat-based diet (MFBD, high in palmitate and myristate, saturated fatty acids in Western diets) in a mammary polyomavirus middle T antigen mouse model (MMTV-PyMT) of breast cancer. Our data demonstrate that neither MFBD or OOBD altered the growth of primary tumors in the MMTV-PyMT mice. The examination of lung metastases revealed that OOBD mice exhibited fewer surface nodules and smaller metastases when compared to MFBD and CD mice. These data suggest that different fatty acids found in different sources of HFDs may alter breast cancer metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.