An optimized isomerization method was developed by heating all-E-astaxanthin in ethyl acetate (70 °C) with I-TiO catalyst, yielding 22.7% and 16.9% of 9Z- and 13Z-astaxanthin, respectively, in 2 h, with 92-95% purity after semipreparative HPLC purification. 13Z-Astaxanthin had higher antioxidant activity than all-E- and 9Z-astaxanthins in oxygen radical absorbing capacity assay for lipophilic compounds, photochemiluminescence, and cellular antioxidant activity (CAA) assays, and 9Z-astaxanthin was higher in DPPH radical-scavenging activity assay and lower in CAA assay. All isomers were relatively stable between pH 2.0 and 11.6, except 13Z- and 9Z-astaxanthins at pH 2.0, suggesting they may be converted after passing the gastric phase in vivo. Metal ions did not significantly (p < 0.05) affect the stability. Results of the current study provides a means for further study into the mechanisms related to in vivo transformation and bioavailability of Z-astaxanthins, and their application in the development of functional foods and nutraceutical products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.