Cadmium is an environmental toxicant, which causes cancer in different organs. It was found that it damages DNA in the various tissues and cultured cell lines. To investigate the mechanism of DNA damage, we have studied the effect of cadmium-induced DNA damage in plasmid pBR322 DNA, and the possible ameliorative effects of antioxidative agents under in vitro conditions. It was observed that cadmium alone did not cause DNA damage. However, it caused DNA damage in the presence of hydrogen peroxide, in a dose dependent manner, because of production of hydroxyl radicals. Findings from this study show the conversion of covalently closed circular double-stranded pBR 322 DNA to the open circular and linear forms of DNA when treated with 10 muM cadmium and various concentrations of H(2)O(2). The conversion was due to nicking in DNA strands. The observed rate of DNA strand breakage was dependent on H(2)O(2) concentration, temperature, and time. Metallothionein I failed to prevent cadmium-induced DNA nicking in the presence of H(2)O(2). Of the two antioxidant enzymes (catalase and superoxide dismutase) studied, only catalase conferred significant (50-60%) protection. EDTA and DMSO exhibited protection similar to catalase, while mannitol showed only about 20% protection against DNA damage. Ethyl alcohol failed to ameliorate cadmium-induced DNA strands break. From this study, it is plausible to infer that cadmium in the presence of hydrogen peroxide causes DNA damage probably by the formation of hydroxyl ions. These results may indicate that cadmium in vivo could play a major role in the DNA damage induced by oxidative stress.
Methamphetamine (METH) is a powerfully addictive psychostimulant that has a pronounced effect on the central nervous system (CNS). The present study aimed to assess METH toxicity in differentiated C6 astroglia-like cells through biochemical and toxicity markers with acute (1 h) and chronic (48 h) treatments. In the absence of external stimulants, cellular differentiation of neuronal morphology was achieved through reduced serum (2.5%) in the medium. The cells displayed branched neurite-like processes with extensive intercellular connections. Results indicated that acute METH treatment neither altered the cell morphology nor killed the cells, which echoed with lack of consequence on reactive oxygen species (ROS), nitric oxide (NO) or inhibition of any cell cycle phases except induction of cytoplasmic vacuoles. On the other hand, chronic treatment at 1 mM or above destroyed the neurite-like processors and decreased the cell viability that paralleled with increased levels of ROS, lipid peroxidation and lactate, depletion in glutathione (GSH) level and inhibition at G0/G1 phase of cell cycle, leading to apoptosis. Pre-treatment of cells with N-acetyl cysteine (NAC, 2.5 mM for 1 h) followed by METH co-treatment for 48 h rescued the cells completely from toxicity by decreasing ROS through increased GSH. Our results provide evidence that increased ROS and GSH depletion underlie the cytotoxic effects of METH in the cells. Since loss in neurite connections and intracellular changes can lead to psychiatric illnesses in drug users, the evidence that we show in our study suggests that these are also contributing factors for psychiatric-illnesses in METH addicts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.