The optical microscope is customarily an instrument of substantial size and expense but limited performance. Here we report an integrated microscope that achieves the optical performance beyond a commercial microscope with a 5× objective but only at 0.15 cm3 and 0.5 gram, whose size is five orders of magnitude smaller than that of a conventional microscope. To achieve this, a progressive optimization pipeline is proposed which systematically optimizes both aspherical lenses and diffractive optical elements with over 30 times memory reduction compared to the end-to-end optimization. By designing a simulation-supervision deep neural network for spatially-varying deconvolution during optical design, we accomplish over 10-times improvement in the depth of field compared to traditional microscopes with great generalization in a wide variety of samples. To show the unique advantages, the integrated microscope is equipped in a cell phone without any accessories for the application of portable diagnostics. We believe our method provides a new framework for the design of miniaturized high-performance imaging systems by integrating aspherical optics, computational optics, and deep learning.
Background Using DNA as a storage medium is appealing due to the information density and longevity of DNA, especially in the era of data explosion. A significant challenge in the DNA data storage area is to deal with the noises introduced in the channel and control the trade-off between the redundancy of error correction codes and the information storage density. As running DNA data storage experiments in vitro is still expensive and time-consuming, a simulation model is needed to systematically optimize the redundancy to combat the channel's particular noise structure. Results Here, we present DeSP, a systematic DNA storage error Simulation Pipeline, which simulates the errors generated from all DNA storage stages and systematically guides the optimization of encoding redundancy. It covers both the sequence lost and the within-sequence errors in the particular context of the data storage channel. With this model, we explained how errors are generated and passed through different stages to form final sequencing results, analyzed the influence of error rate and sampling depth to final error rates, and demonstrated how to systemically optimize redundancy design in silico with the simulation model. These error simulation results are consistent with the in vitro experiments. Conclusions DeSP implemented in Python is freely available on Github (https://github.com/WangLabTHU/DeSP). It is a flexible framework for systematic error simulation in DNA storage and can be adapted to a wide range of experiment pipelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.