The efficacy of therapeutics is dependent on a drug binding to its cognate target. Optimization of target engagement by drugs in cells is often challenging, because drug binding cannot be monitored inside cells. We have developed a method for evaluating drug binding to target proteins in cells and tissue samples. This cellular thermal shift assay (CETSA) is based on the biophysical principle of ligand-induced thermal stabilization of target proteins. Using this assay, we validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects and drug resistance in cancer cell lines, as well as drug distribution in tissues. CETSA is likely to become a valuable tool for the validation and optimization of drug target engagement.
Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes. Using TPCA, we identified many complexes without detectable differential protein expression, including chromatin-associated complexes, modulated in S phase of the cell cycle. Comparison of six cell lines by TPCA revealed cell-specific interactions even in fundamental cellular processes. TPCA constitutes an approach for system-wide studies of protein complexes in nonengineered cells and tissues and might be used to identify protein complexes that are modulated in diseases.
Metabolite-protein interactions define the output of metabolic pathways and regulate many cellular processes. Although diseases are often characterized by distortions in metabolic processes, efficient means to discover and study such interactions directly in cells have been lacking. A stringent implementation of proteome-wide Cellular Thermal Shift Assay (CETSA) was developed and applied to key cellular nucleotides, where previously experimentally confirmed protein-nucleotide interactions were well recaptured. Many predicted, but never experimentally confirmed, as well as novel protein-nucleotide interactions were discovered. Interactions included a range of different protein families where nucleotides serve as substrates, products, co-factors or regulators. In cells exposed to thymidine, a limiting precursor for DNA synthesis, both dose- and time-dependence of the intracellular binding events for sequentially generated thymidine metabolites were revealed. Interactions included known cancer targets in deoxyribonucleotide metabolism as well as novel interacting proteins. This stringent CETSA based strategy will be applicable for a wide range of metabolites and will therefore greatly facilitate the discovery and studies of interactions and specificities of the many metabolites in human cells that remain uncharacterized.
A key step of the action of most drugs is their binding (engagement) of the target protein(s). However, limitations in the available methods for directly accessing this critical step have added uncertainties in many stages of drug development. We have developed a generic method for evaluating drug binding to target proteins in cells and tissues (Martinez Molina et al. Science, 341:84). The technique is based on the physical phenomenon of ligand-induced thermal stabilization of target proteins; the method is therefore called the cellular thermal shift assay (CETSA). The technique allows for the first time to directly measure the biophysical interactions between a drug and protein target in non- engineered cells and tissues. We show that using CETSA a range of critical factors for drug development can be addressed at the target engagement level, including drug transport and activation, off-target effects, drug resistance as well as drug distribution in cells, patient and animal tissues. Using quantitative mass-spectrometry, proteome-wide CETSA has been established which allows for off-target effects as well as downstream biochemistry to be discovered (Savitsk et al. Science, 346, 6205:1255784). Together the data supports that CETSA is likely to become a valuable tool for developing and understanding the action of cancer drugs in the future. Citation Format: Pär Nordlund, Sara Lööf, Henritte Laursen, Anette Öberg, Johan Lengqvist, Rozbeh Jafari, Lingyun Dai, Ka DIam Go, Nayana Prabhu, Radoslaw Sobota, Andreas Larsson, Anna Jansson, Chris Heng Tan Soon, Lekshmy Sreekumar, Yan Ting Lim, Daniel Martines Molina. CETSA as a new strategy to understand efficacy, adverse effects and resistance development of anticancer drugs. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4386.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.