Abstract:We use inelastic neutron scattering to study spin waves below and above T N in ironarsenide BaFe 2 As 2 . In the low-temperature orthorhombic phase, we find highly anisotropic spin waves with a large damping along the antiferromagnetic (AF) aaxis direction. On warming the system to the paramagnetic tetragonal phase, the low-energy spin waves evolve into quasi-elastic excitations, while the anisotropic spin excitations near the zone boundary persist. These results strongly suggest the presence of a spin nematic fluid in the tetragonal phase of BaFe 2 As 2 , which may cause the electronic and orbital anisotropy observed in these materials.
A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states [1][2][3][4] , most of which are characterized by exotic spin excitations with fractional quantum numbers (termed 'spinon'). Here, we report neutron scattering measurements that reveal broad spin excitations covering a wide region of the Brillouin zone in a triangular antiferromagnet YbMgGaO 4 . The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, which is consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to a QSL state with a spinon Fermi surface in YbMgGaO 4 that has a perfect spin-1/2 triangular lattice as in the original proposal 4 of quantum spin liquids.In 1973, Anderson proposed the pioneering idea of the quantum spin liquid (QSL) in the study of the triangular lattice Heisenberg antiferromagnet 4 . This idea was revived after the discovery in 1986 of high-temperature superconductivity 5 . A QSL, as currently understood, does not fit into Landau's conventional paradigm of symmetry breaking phases 1,2,6,7 , and is arXiv:1607.02615v2 [cond-mat.str-el] 31 Jul 2017 2 instead an exotic state of matter characterized by spinon excitations and emergent gauge structures [1][2][3]6 . The search for QSLs in models and materials [8][9][10][11][12] has been partly facilitated by the Oshikawa-Hastings-Lieb-Schultz-Mattis (OHLSM) theorem that may hint at the possibility of QSLs in Mott insulators with odd electron fillings and a global U(1) spin rotational symmetry [13][14][15] .Indeed, a continuum of spin excitations has been observed in a kagome-lattice material ZnCu 3 (OD) 6 Cl 2 (refs 12,16). However, the requirement of the U(1) spin rotational symmetry, prevents the application of OHLSM theorem in strong spin-orbit-coupled (SOC) Mott insulators in which the spin rotational symmetry is completely absent. A recent theory addressed this limitation of the OHLSM theorem, arguing that, as long as time-reversal symmetry is preserved, the ground state of an SOC Mott insulator with odd electron fillings must be exotic 17 .The newly discovered triangular antiferromagnet YbMgGaO 4 (refs 18,19) displays no indication of magnetic ordering or symmetry breaking at temperatures as low as 30 mK despite approximately 4 K for the spin interaction energy scale. Because of the strong SOC of the Yb electrons, YbMgGaO 4 was the first QSL to be proposed beyond the OHLSM theorem 19 . The thirteen 4 f electrons of the Yb 3+ ion form the spin-orbit-entangled Kramers doublets that are split by the D 3d crystal electric fields [20][21][22] . At temperatures co...
In a photovoltaic perovskite, entropy-driven structural transition enables kinetic trapping of a desired photovoltaic phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.