Getting new security features and protocols to be widely adopted and deployed in the Internet has been a continuing challenge. There are several reasons for this, in particular economic reasons arising from the presence of network externalities. Indeed, like the Internet itself, the technologies to secure it exhibit network effects: their value to individual users changes as other users decide to adopt them or not. In particular, the benefits felt by early adopters of security solutions might fall significantly below the cost of adoption, making it difficult for those solutions to gain attraction and get deployed at a large scale. Our goal in this paper is to model and quantify the impact of such externalities on the adoptability and deployment of security features and protocols in the Internet. We study a network of interconnected agents, which are subject to epidemic risks such as those caused by propagating viruses and worms, and which can decide whether or not to invest some amount to deploy security solutions. Agents experience negative externalities from other agents, as the risks faced by an agent depend not only on the choices of that agent (whether or not to invest in self-protection), but also on those of the other agents. Expectations about choices made by other agents then influence investments in self-protection, resulting in a possibly suboptimal outcome overall. We present and solve an analytical model where the agents are connected according to a variety of network topologies. Borrowing ideas and techniques used in statistical physics, we derive analytic solutions for sparse random graphs, for which we obtain asymptotic results. We show that we can explicitly identify the impact of network externalities on the adoptability and deployment of security features. In other words, we identify both the economic and network properties that determine the adoption of security technologies. Therefore, we expect our results to provide useful guidance for the design of new economic mechanisms and for the development of network protocols likely to be deployed at a large scale.
Motivated by the modeling of the spread of viruses or epidemics with coordination among agents, we introduce a new model generalizing both the basic contact model and the bootstrap percolation. We analyze this percolated threshold model when the underlying network is a random graph with fixed degree distribution. Our main results unify many results in the random graphs literature. In particular, we provide a necessary and sufficient condition under which a single node can trigger a large cascade. Then we quantify the possible impact of an attacker against a degree based vaccination and an acquaintance vaccination. We define a security metric allowing to compare the different vaccinations. The acquaintance vaccination requires no knowledge of the node degrees or any other global information and is shown to be much more efficient than the uniform vaccination in all cases.
Given a set of pairwise comparisons, the classical ranking problem computes a single ranking that best represents the preferences of all users. In this paper, we study the problem of inferring individual preferences, arising in the context of making personalized recommendations. In particular, we assume that there are n users of r types; users of the same type provide similar pairwise comparisons for m items according to the BradleyTerry model. We propose an efficient algorithm that accurately estimates the individual preferences for almost all users, if there are r max{m, n} log m log 2 n pairwise comparisons per type, which is near optimal in sample complexity when r only grows logarithmically with m or n. Our algorithm has three steps: first, for each user, compute the net-win vector which is a projection of its m 2 -dimensional vector of pairwise comparisons onto an m-dimensional linear subspace; second, cluster the users based on the net-win vectors; third, estimate a single preference for each cluster separately. The net-win vectors are much less noisy than the high dimensional vectors of pairwise comparisons and clustering is more accurate after the projection as confirmed by numerical experiments. Moreover, we show that, when a cluster is only approximately correct, the maximum likelihood estimation for the Bradley-Terry model is still close to the true preference.
This paper considers large scale distributed content service platforms, such as peer-to-peer video-on-demand systems. Such systems feature two basic resources, namely storage and bandwidth. Their efficiency critically depends on two factors: (i) content replication within servers, and (ii) how incoming service requests are matched to servers holding requested content. To inform the corresponding design choices, we make the following contributions.We first show that, for underloaded systems, so-called proportional content placement with a simple greedy strategy for matching requests to servers ensures full system efficiency provided storage size grows logarithmically with the system size. However, for constant storage size, this strategy undergoes a phase transition with severe loss of efficiency as system load approaches criticality.To better understand the role of the matching strategy in this performance degradation, we characterize the asymptotic system efficiency under an optimal matching policy. Our analysis shows that -in contrast to greedy matchingoptimal matching incurs an inefficiency that is exponentially small in the server storage size, even at critical system loads. It further allows a characterization of content replication policies that minimize the inefficiency. These optimal policies, which differ markedly from proportional placement, have a simple structure which makes them implementable in practice.On the methodological side, our analysis of matching performance uses the theory of local weak limits of random graphs, and highlights a novel characterization of matching numbers in bipartite graphs, which may both be of independent interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.