Ferroptosis is an iron-dependent cell death, which is characterized by iron overload and lipid peroxidation. Ferroptosis is distinct from apoptosis, necroptosis, autophagy, and other types of cell death in morphology and function. Ferroptosis is regulated by a variety of factors and controlled by several mechanisms, including mitochondrial activity and metabolism of iron, lipid, and amino acids. Accumulating evidence shows that ferroptosis is closely related to a majority of cardiovascular diseases (CVDs), including cardiomyopathy, myocardial infarction, ischemia/reperfusion injury, heart failure, and atherosclerosis. This review summarizes the current status of ferroptosis and discusses ferroptosis as a potential therapeutic target for CVDs.
Atherosclerosis (AS) is one of the most common cardiovascular diseases (CVDs), and there is currently no effective drug to reverse its pathogenesis. Trimethylamine N-oxide (TMAO) is a metabolite of the gut flora with the potential to act as a new risk factor for CVD. Many studies have shown that TMAO is involved in the occurrence and development of atherosclerotic diseases through various mechanisms; however, the targeted therapy for TMAO remains controversial. This article summarizes the vital progress made in relation to evaluations on TMAO and AS in recent years and highlights novel probable approaches for the prevention and treatment of AS.
:Atherosclerotic coronary heart disease is a common cardiovascular disease with high morbidity and mortality. In recent years, the incidence of coronary heart disease has gradually become younger, and biomarkers for predicting coronary heart disease have demonstrated valuable clinical prospects. Several studies have established an association between coronary heart disease and intestinal flora metabolites, including trimethylamine oxide (TMAO), which has attracted widespread attention from researchers. Investigations have also shown that plasma levels of TMAO and its precursors can predict cardiovascular risk in humans; however, TMAO’s mechanism of action in causing coronary heart disease is not fully understood. This review examines TMAO’s generation, the mechanism through which it causes coronary heart disease, and the approaches used to treat TMAO-caused coronary heart disease to possible avenues for future research on coronary heart disease and find new concepts for the treatment of the condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.