Decreased plasma fibrinolysis may contribute to accelerated atherothrombosis in diabetes. To observe whether hyperglycemia and hyperinsulinemia, common findings in type 2 diabetes, acutely affect plasma fibrinolysis in vivo, we evaluated plasma fibrinolysis (lysis of fibrin plates, free PAI-1 activity and t-PA activity) in the rat after a hyperglycemic euinsulinemic clamp (n=8), an euglycemic hyperinsulinemic clamp (n=7) or a saline infusion (n=15). Plasma fibrinolytic activity was sharply reduced after both the hyperglycemic and hyperinsulinemic clamps as compared to the respective controls (mean lysis areas on the fibrin plate, 139+/-21 vs. 323+/-30 mm2, p<0.001; 78+/-27 vs. 312+/-27 mm2 p<0.001, respectively). Plasma PAI-1 activity was greater after both hyperglycemic and hyperinsulinemic clamps as compared to saline infusion (6.6+/-2.6 vs. 1.6+/-0.6 IU/ml, p<0.001; 26+/-4 vs. 1.3+/-0.7 IU/ml, p<0.0001, respectively). Plasma t-PA activity was significantly reduced both after the hyperglycemic (0.36+/-0.15 vs. 2.17+/-0.18 IU/ml in controls, p<0.001) and the hyperinsulinemic (0.3+/-0.1 vs. 2.3+/-0.3 IU/ml in control, p<0.001) clamps. These data show that in vivo both acute hyperglycemia and acute hyperinsulinemia can decrease plasma fibrinolytic potential and that this is due to increased plasma PAI-1 and decreased free t-PA activities.
This large, non-randomized, case-control study suggests quality of life gains deriving from greater lifestyle flexibility, less fear of hypoglycaemia, and higher treatment satisfaction, when CSII is compared with either glargine-based or NPH-based MDI regimens.
We tested the hypothesis that glucosamine, a putative activator of glucose toxicity in vitro through acceleration of the hexosamine pathway, may determine in vivo the two key features of glucose toxicity in diabetes, namely, peripheral insulin resistance and decreased insulin secretion. Two groups of awake rats were studied either with intraarterial administration of glucosamine (5 mumol.kg-1.min-1) or saline. Insulin secretion was determined after arginine, glucose (hyperglycaemic clamp), and arginine/glucose infusions, while insulin-mediated glucose metabolism was assessed by the euglycaemic hyperinsulinaemic clamp in combination with [3-3H]-glucose infusion. Glucosamine had no effects on arginine-induced insulin secretion both at euglycaemia and hyperglycaemia, but significantly (40-50%) impaired glucose-induced insulin secretion (both first and second phases). During euglycaemic hyperinsulinaemic clamp studies, glucosamine decreased glucose uptake by approximately 30%, affecting glycolysis (estimated from 3H2O rate of appearance) and muscle glycogen synthesis (calculated from accumulation of [3H]-glucosyl units in muscle glycogen) to a similar extent. Muscle glucose 6-phosphate concentration was markedly reduced in the glucosamine-infused rats, suggesting an impairment in glucose transport/phosphorylation. Therefore, an increase in hexosamine metabolism in vivo: 1) inhibits glucose-induced insulin secretion, and 2) reduces insulin stimulation of both glycolysis and glycogen synthesis, thereby mimicking in normal rats the major alterations due to glucose toxicity in diabetes.
Hybrid receptors composed of an insulin alphabeta-hemireceptor and a type 1 IGF alphabeta-hemireceptor are formed in tissues expressing both molecules. We recently reported an increased hybrid receptor expression in skeletal muscle of type 2 diabetic patients that is inversely correlated with in vivo insulin sensitivity. It is unclear whether these changes were due to primary abnormalities or to secondary derangements acting in vivo, such as hyperglycemia. To address this, we determined abundance of hybrids in skeletal muscle from three groups of rats: controls, diabetic (90% pancreatectomy), and diabetic treated with phlorizin to normalize plasma glucose levels. We found that the abundance of hybrid receptors was higher in diabetic rats compared with control and phlorizin-treated diabetic rats (percentage of 125I-insulin bound versus total added radioactivity [B/T] = 1.8+/-0.11, 0.4+/-0.01, and 0.32+/-0.04, respectively; P < 0.0001). Fasting plasma glucose levels were positively correlated with hybrids abundance (r = 0.77, P < 0.002). Hybrid receptor protein content, assessed by immunoblotting, was 2.4-fold higher in diabetic rats as compared with control and phlorizin-treated diabetic rats. Because it has been shown that some of the regulatory effects of glucose may be mediated by the glucosamine pathway, we subsequently determined the effect of an in vivo glucosamine infusion on hybrid receptor formation. We found that abundance of hybrids was significantly higher in muscle from glucosamine-treated rats compared with control rats (B/T = 0.17+/-0.02 and 0.11+/-0.01, respectively; P < 0.009). Quantitation of hybrid content by immunoblotting revealed that their abundance was 1.9-fold higher in glucosamine-treated rats. The results demonstrate that 1) elevated glucose levels in diabetic rats are associated with increased expression of hybrid receptors in muscle, 2) correction of hyperglycemia with phlorizin completely reverses increased expression of hybrids, and 3) glucosamine infused into control rats mimics the effects of hyperglycemia on hybrid receptor formation. Thus, the results support the hypothesis that glucose acting, at least in part, through the glucosamine pathway may play an important role in regulating hybrid receptor assembly in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.