Energy diversification using microalgae biomass offers a solution to the fossil fuel crisis, which has become a global issue. Chlorella sp. is a microalga that can produce lipids and reduce chemical oxygen demand (COD) in liquid waste. In this research, we used Chlorella sp. to produce lipids and reduce COD in tofu liquid waste. This research aimed to identify the interaction between a complex microorganism, as a decomposer agent, with the addition of the photosynthetic microalgae Chlorella sp. as an oxygen producer to reduce COD in tofu liquid waste. Moreover, we aimed to determine the interaction between Chlorella sp. and a bacterial consortium for microalgae growth and lipid production. This study was conducted in batches with the addition of bacteria at five different concentrations (% v/v): 0 (no addition), up to 0.25, 0.50, 0.75, and 1. Cultivation was conducted for 13 days with solar irradiation in a photobioreactor. As a result, the highest density and the highest growth rate were obtained from the treatment with 1% bacteria, achieving as many as 5.6510 6 cell/mL and 0.21/day. The 1% treatment was able to produce lipids and COD removal efficiencies of 20.93% and 96.30% at the best-removing detention times, which both occurred on the 13 th day of cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.