We investigated the influence of hypoxia on the asymptote (critical power, CP) and the curvature constant (W') of the hyperbolic power-duration relationship, as measured by both conventional and all-out testing procedures. 13 females completed 5 constant-power prediction trials and a 3-min all-out test to estimate CP and W', in both normoxia (N) and moderate hypoxia (H; FiO2=0.13). CP was significantly reduced in hypoxia compared to normoxia when estimated by conventional (H:132±17 vs. N:175±25 W; P<0.001) and all-out methods (H:134±23 vs. N:172±30 W; P<0.01). The W' was not significantly different in hypoxia compared to normoxia when established by conventional (H:12.3±2.7 vs. N:13.2±2.2 kJ) and all-out methods (H:12.0±2.6 vs. N:12.5±1.4 kJ). Estimates of CP and W' obtained with conventional and all-out methods were not significantly different either in normoxia or hypoxia. There was a significant relationship between the % change in CP relative to V̇(O2peak) and the % change in W' in normoxia compared to hypoxia (r=0.83, P<0.001; conventional test). Changes in the W' in hypoxia are related to changes in the CP relative to V̇(O2peak), suggesting that the W' may not be defined simply as an 'anaerobic' energy store.
The current study demonstrates that after 2 familiarization sessions, reliable CP and W' parameters can be obtained from trained cyclists using only 2 maximal-exercise trials. These results offer practitioners a practical, time-efficient solution for incorporating power-duration testing into applied athlete support.
Body position is known to alter power production and affect cycling performance. The aim of this study was to compare mechanical power output in two riding positions, and to calculate the effects on critical power (CP) and W' estimates. Seven trained cyclists completed three peak power output efforts and three fixed-duration trial (3-, 5- and 12-min) riding with their hands on the brake lever hoods (BLH), or in a time trial position (TTP). A repeated-measures analysis of variance showed that mean power output during the 5-min trial was significantly different between BLH and TTP positions, resulting in a significantly lower estimate of CP, but not W', for the TTP trial. In addition, TTP decreased the performance during each trial and increased the percentage difference between BLH and TTP with greater trial duration. There were no differences in pedal cadence or heart rate during the 3-min trial; however, TTP results for the 12-min trial showed a significant fall in pedal cadence and a significant rise in heart rate. The findings suggest that cycling position affects power output and influences consequent CP values. Therefore, cyclists and coaches should consider the cycling position used when calculating CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.