Hyaluronan (HA) is a simple but diverse glycosaminoglycan. It plays a major role in aging, cellular senescence, cancer, and tissue homeostasis. In which way HA affects the surrounding tissues greatly depends on the molecular weight of HA. Whereas high molecular weight HA is associated with homeostasis and protective effects, HA fragments tend to be linked to the pathologic state. Furthermore, the interaction of HA with its binding partners, the hyaladherins, such as CD44, is essential for sustaining tissue integrity and is likewise related to cancer. The naked mole rat, a rodent species, possesses a special form of very high molecular weight (vHMW) HA, which is associated with the extraordinary cancer resistance and longevity of those animals. This review addresses HA and its diverse facets: from HA synthesis to degradation, from oligomeric HA to vHMW-HA and from its beneficial properties to the involvement in pathologies. We further discuss the functions of HA in the naked mole rat and compare them to human conditions. Though intensively researched, this simple polymer bears some secrets that may hold the key for a better understanding of cellular processes and the development of diseases, such as cancer.
Microsatellite instability (MSI) represents one of the major types of genomic instability in human cancers and is most common in colorectal cancer (CRC) and endometrial cancer (EC). MSI develops as a consequence of DNA mismatch repair (MMR) deficiency, which can occur sporadically or in the context of Lynch syndrome (LS), the most common inherited tumor syndrome. MMR deficiency triggers the accumulation of high numbers of somatic mutations in the affected cells, mostly indel mutations at microsatellite sequences. MSI tumors are among the most immunogenic human tumors and are often characterized by pronounced local immune responses. However, so far, little is known about immunological differences between sporadic and hereditary MSI tumors. Therefore, a systematic literature search was conducted to comprehensively collect data on the differences in local T cell infiltration and immune evasion mechanisms between sporadic and LS-associated MSI tumors. The vast majority of collected studies were focusing on CRC and EC. Generally, more pronounced T cell infiltration and a higher frequency of B2M mutations were reported for LS-associated compared to sporadic MSI tumors. In addition, phenotypic features associated with enhanced lymphocyte recruitment were reported to be specifically associated with hereditary MSI CRCs. The quantitative and qualitative differences clearly indicate a distinct biology of sporadic and hereditary MSI tumors. Clinically, these findings underline the need for differentiating sporadic and hereditary tumors in basic science studies and clinical trials, including trials evaluating immune checkpoint blockade therapy in MSI tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.