Repetitive elements are a major component of DNA sequences due to their ability to propagate through the genome. Characterization of Metazoan repetitive profiles is picking up, however, current pipelines are failing to identify a significant proportion of divergent repeats in non-model organisms. The order Decapoda, for which repeat content analyses are largely lacking, is characterized by extremely variable genome sizes that suggest an important presence of repetitive elements. Here we developed a new standardized pipeline to annotate repetitive elements in non-model organisms, which we applied on 20 Decapoda and 6 other crustacean genomes. With our new tool we identify 10% more repetitive elements than standard pipelines. Repetitive elements were more abundant in Decapoda species than in other crustaceans, with an incredibly large number of highly repeated satDNA families. Moreover, we demonstrated a high correlation between assembly size and transposable elements and a different repeat dynamics between Dendrobranchiata and Reptantia. The patterns of repetitive elements largely reflect the phylogenetic relationships of Decapoda and the distinct evolutionary trajectories within Crustacea. In summary, our results highlight the impact of repetitive elements on genome evolution in Decapoda and the value of our novel annotation pipeline, which will provide a baseline for future comparative analyses.
Repetitive elements are a major component of DNA sequences due to their ability to propagate through the genome. Characterization of Metazoan repetitive profiles is improving; however, current pipelines fail to identify a significant proportion of divergent repeats in non-model organisms. The Decapoda order, for which repeat content analyses are largely lacking, is characterized by extremely variable genome sizes that suggest an important presence of repetitive elements. Here, we developed a new standardized pipeline to annotate repetitive elements in non-model organisms, which we applied to twenty Decapoda and six other Crustacea genomes. Using this new tool, we identified 10% more repetitive elements than standard pipelines. Repetitive elements were more abundant in Decapoda species than in other Crustacea, with a very large number of highly repeated satellite DNA families. Moreover, we demonstrated a high correlation between assembly size and transposable elements and different repeat dynamics between Dendrobranchiata and Reptantia. The patterns of repetitive elements largely reflect the phylogenetic relationships of Decapoda and the distinct evolutionary trajectories within Crustacea. In summary, our results highlight the impact of repetitive elements on genome evolution in Decapoda and the value of our novel annotation pipeline, which will provide a baseline for future comparative analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.