Methylated and inorganic thioarsenates have recently been reported from paddy fields besides the better-known oxyarsenates. Methylated thioarsenates are highly toxic for humans, yet their uptake, transformation, and translocation in rice plants is unknown. Here, hydroponic experiments with 20 day old rice plants showed that monomethylmonothioarsenate (MMMTA), dimethylmonothioarsenate (DMMTA), and monothioarsenate (MTA) were taken up by rice roots and could be detected in the xylem. Total arsenic (As) translocation from roots to shoots was higher for plants exposed to DMMTA, MTA, and dimethylarsenate (DMAV) compared to MMMTA and monomethylarsenate (MMAV). All thioarsenates were partially transformed in the presence of rice roots, but processes and extents differed. MMMTA was subject to abiotic oxidation and largely dethiolated to MMAV already outside the plant, probably due to root oxygen loss. DMMTA and MTA were not oxidized abiotically. Crude protein extracts showed rapid enzymatic reduction for MTA but not for DMMTA. Our study implies that DMMTA has the highest potential to contribute to total As accumulation in grains either as DMAV or partially as DMMTA. DMMTA has once been detected in rice grains using enzymatic extraction. By routine acid extraction, DMMTA is determined as DMAV and thus escapes regulation despite its toxicity.
In flooded paddy soils, inorganic and methylated thioarsenates contribute substantially to arsenic speciation besides the much-betterinvestigated oxyarsenic species, and thioarsenate uptake into rice plants has recently been shown. To better understand their fate when soil redox conditions change, that is, from flooding to drainage to reflooding, batch incubations and unplanted microcosm experiments were conducted with two paddy soils covering redox potentials from E H −260 to +200 mV. Further, occurrence of thioarsenates in the oxygenated rice rhizosphere was investigated using planted rhizobox experiments. Soil flooding resulted in rapid formation of inorganic thioarsenates with a dominance of trithioarsenate. Maximum thiolation of inorganic oxyarsenic species was 57% at E H −130 mV and oxidation caused nearly complete dethiolation. Only monothioarsenate formed again upon reflooding and was the major inorganic thioarsenate detected in the rhizosphere. Maximum thiolation of mono-and dimethylated oxyarsenates was about 70% and 100%, respectively, below E H 0 mV. Dithiolated species dominated over monothiolated species below E H −100 mV. Among all thioarsenates, dimethylated monothioarsenate showed the least transformation upon prolonged oxidation. It also was the major thiolated arsenic species in the rhizosphere with concentrations comparable to its precursor dimethylated oxyarsenate, which is especially critical since dimethylated monothioarsenate is highly carcinogenic.
<p>Secondary minerals such as iron and aluminum (oxyhydr)oxides are a well-known key factor determining the accumulation and persistence of organic carbon (OC) in soil. Manganese (Mn) oxides, although being less abundant in soil than other oxide minerals, may also bind and stabilize organic matter. In addition, they exhibit a high redox activity that may promote oxidation of refractory organic compounds into substrates easily available to microorganisms. However, little is known about the adsorption and oxidation of dissolved OC (DOC) by Mn oxides. Therefore, we investigated the adsorption of dissolved organic matter (DOM) to vernadite, acid birnessite, and cryptomelane, by varying DOM type (beech and pine-derived), pH (4 and 7), and background electrolyte composition (no salt addition, 0.01&#160;M NaCl or CaCl<sub>2</sub>). Preliminary results show that the extent and kinetics of DOM adsorption as well as oxidative DOM transformation strongly differed with Mn oxides and sorption conditions. Overall, DOM adsorption was higher at pH&#160;4 than at pH&#160;7. Vernadite was most sorptive, retaining 68% to 85% of added DOC at pH&#160;4. At pH&#160;7, on average 30% less DOC was adsorbed by Mn oxides. After reaction, reduced specific ultraviolet absorbance at 280 nm of DOM indicates preferential adsorption of aromatic moieties. Contact of DOM with Mn oxides also resulted in high concentrations of dissolved low-molecular-weight (LMW) organic acids, consisting mainly of formic, acetic, oxalic, and citric acid. In addition, we will present results from liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry and X-ray diffraction on the molecular transformation of reacted DOM and reductive changes of reacted Mn oxides, respectively. Consequently, interactions of DOM and Mn oxides may promote selective sorptive stabilization of organic matter as well as support microbial growth due to oxidative production of easily available organic compounds.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.