Desertification is a growing risk for humanity. Studies show that water access will be the leading cause of massive migration in the future. For this reason, significant research efforts are devoted to identifying new sources of water. Among this work, one of the more interesting strategies takes advantage of atmospheric non-liquid water using water harvesting. Various strategies exist to harvest water, but many suffer from low yield. In this work, we take inspiration from a Mexican plant (Echeveria pulvinate) to prepare a material suitable for future water harvesting applications. Observation of E. pulvinate reveals that parahydrophobic properties are favorable for water harvesting. To mimic these properties, we leveraged a combination of 3D printing and post-functionalization to control surface wettability and obtain parahydrophobic properties. The prepared surfaces were investigated using IR and SEM. The surface roughness and wettability were also investigated to completely describe the elaborated surfaces and strongly hydrophobic surfaces with parahydrophobic properties are reported. This new approach offers a powerful platform to develop parahydrophobic features with desired three-dimensional shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.