Emerging evidence suggests that insect populations may be declining at local and global scales, threatening the sustainability of the ecosystem services that insects provide. Insect declines are of particular concern in the Neotropics, which holds several of the world’s hotspots of insect endemism and diversity. Conservation policies are one way to prevent and mitigate insect declines, yet these policies are usually biased toward vertebrate species. Here, we outline some key policy instruments for biodiversity conservation in the Neotropics and discuss their potential contribution and shortcomings for insect biodiversity conservation. These include species-specific action policies, protected areas and Indigenous and Community Conserved Areas (ICCAs), sectoral policies, biodiversity offsetting, market-based mechanisms, and the international policy instruments that underpin these efforts. We highlight that although these policies can potentially benefit insect biodiversity indirectly, there are avenues in which we could better incorporate the specific needs of insects into policy to mitigate the declines mentioned above. We propose several areas of improvement. Firstly, evaluating the extinction risk of more Neotropical insects to better target at-risk species with species-specific policies and conserve their habitats within area-based interventions. Secondly, alternative pest control methods and enhanced monitoring of insects in a range of land-based production sectors. Thirdly, incorporating measurable and achievable insect conservation targets into international policies and conventions. Finally, we emphasise the important roles of community engagement and enhanced public awareness in achieving these improvements to insect conservation policies.
The emerging infectious disease chytridiomycosis is prevalent in Central and South America, and has caused catastrophic declines of amphibian populations in the Neotropics. The responsible organism, Batrachochytrium dendrobatidis, has been recorded on three West Indian islands, but the whole of the Caribbean region is predicted to offer a suitable environment for the disease. Monitoring the spread of chytridiomycosis is thus a priority in this region, which has exceptionally high levels of amphibian endemism. PCR analysis of 124 amphibian skin swabs in Tobago (Republic of Trinidad and Tobago) demonstrated the presence of B. dendrobatidis in three widely separated populations of the frog Mannophryne olmonae, which is listed as Critically Endangered on the basis of recent population declines. Chytridiomycosis is presently endemic in this species, with a prevalence of about 20% and no associated clinical disease. Increased susceptibility to chytridiomycosis from climate change is unlikely in amphibian populations in Tobago, as this island does not have high montane environments, but remains a possibility in the sister island of Trinidad. Preventing the spread of chytridiomycosis within and between these and other Caribbean islands should be a major goal of practical conservation measures for amphibians in the region.
Amphibian chytridiomycosis occurs on a small proportion of West Indian islands, but the entire Caribbean region, including Trinidad, offers a suitable environment for the infection. We report the presence of the causative agent Batrachochytrium dendrobatidis (Bd) in 2 out of 12 populations sampled of the Vulnerable Trinidad stream frog, Mannophryne trinitatis. We analyzed 184 skin swabs collected from wild frogs using real-time PCR analysis. Follow-up sampling determined a prevalence of Bd infection of 3 and 23% in these 2 populations. We did not find any evidence of associated clinical disease. Bd-positive populations were located at the highest elevations studied (425 to 450 m). These 2 populations had more juveniles than other populations, and juveniles were more likely to be infected than adults. Our results suggest that sampling juveniles may provide the greatest sensitivity for any future monitoring for the presence of Bd in M. trinitatis populations in Trinidad.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.