Objective IBS is a common gut disorder of uncertain pathogenesis. Among other factors, genetics and certain foods are proposed to contribute. Congenital sucrase–isomaltase deficiency (CSID) is a rare genetic form of disaccharide malabsorption characterised by diarrhoea, abdominal pain and bloating, which are features common to IBS. We tested sucrase–isomaltase (SI) gene variants for their potential relevance in IBS. Design We sequenced SI exons in seven familial cases, and screened four CSID mutations (p.Val557Gly, p. Gly1073Asp, p.Arg1124Ter and p.Phe1745Cys) and a common SI coding polymorphism (p.Val15Phe) in a multicentre cohort of 1887 cases and controls. We studied the effect of the 15Val to 15Phe substitution on SI function in vitro. We analysed p.Val15Phe genotype in relation to IBS status, stool frequency and faecal microbiota composition in 250 individuals from the general population. Results CSID mutations were more common in patients than asymptomatic controls (p=0.074; OR=1.84) and Exome Aggregation Consortium reference sequenced individuals (p=0.020; OR=1.57). 15Phe was detected in 6/7 sequenced familial cases, and increased IBS risk in case–control and population-based cohorts, with best evidence for diarrhoea phenotypes (combined p=0.00012; OR=1.36). In the population-based sample, 15Phe allele dosage correlated with stool frequency (p=0.026) and Parabacteroides faecal microbiota abundance (p=0.0024). The SI protein with 15Phe exhibited 35% reduced enzymatic activity in vitro compared with 15Val (p<0.05). Conclusions SI gene variants coding for disaccharidases with defective or reduced enzymatic activity predispose to IBS. This may help the identification of individuals at risk, and contribute to personalising treatment options in a subset of patients.
Lactase-phlorizin hydrolase (LPH) is a membrane glycoprotein and the only β-galactosidase of the brush border membrane of the intestinal epithelium. Besides active transcription, expression of the active LPH requires different maturation steps of the polypeptide through the secretory pathway, including N- and O-glycosylation, dimerization and proteolytic cleavage steps. The inability to digest lactose due to insufficient lactase activity results in gastrointestinal symptoms known as lactose intolerance. In this review, we will concentrate on the structural and functional features of LPH protein and summarize the cellular and molecular mechanism required for its maturation and trafficking. Then, different types of lactose intolerance are discussed, and the molecular aspects of lactase persistence/non-persistence phenotypes are investigated. Finally, we will review the literature focusing on the lactase persistence/non-persistence populations as a comparative model in order to determine the protective or adverse effects of milk and dairy foods on the incidence of colorectal, ovarian and prostate cancers.
BackgroundCongenital lactase deficiency (CLD) is a rare severe autosomal recessive disorder, with symptoms like watery diarrhea, meteorism and malnutrition, which start a few days after birth by the onset of nursing. The most common rationales identified for this disorder are missense mutations or premature stop codons in the coding region of the lactase-phlorizin hydrolase (LPH) gene. Recently, two heterozygous mutations, c.4419C > G (p.Y1473X) in exon 10 and c.5387delA (p.D1796fs) in exon 16, have been identified within the coding region of LPH in a Japanese infant with CLD.MethodsHere, we investigate the influence of these mutations on the structure, biosynthesis and function of LPH. Therefore the mutant genes were transiently expressed in COS-1 cells.ResultsWe show that both mutant proteins are mannose-rich glycosylated proteins that are not capable of exiting the endoplasmic reticulum. These mutant proteins are misfolded and turnover studies show that they are ultimately degraded. The enzymatic activities of these mutant forms are not detectable, despite the presence of lactase and phlorizin active sites in the polypeptide backbone of LPH-D1796fs and LPH-Y1473X respectively. Interestingly, wild type LPH retains its complete enzymatic activity and intracellular transport competence in the presence of the pathogenic mutants suggesting that heterozygote carriers presumably do not show symptoms related to CLD.ConclusionsOur study strongly suggests that the onset of severe forms of CLD is elicited by mutations in the LPH gene that occur in either a compound heterozygous or homozygous pattern of inheritance.
AUogeneic bone marrow transplantation (BMT) is considered to be the only curative therapy for chronic myelogenous leukemia (CML). The cytogenetic marker of CML, the Philadelphia (Ph) chromosome, or the molecular alterations caused by the BCR-ABL gene fusion can be used to monitor the success of treatment. A sensitive two-step reverse-transcription polymerase chain reaction (RT-PCR) was done to score BCR-ABL-mRNA-positive leukemic cells in frozen bone marrow samples of 15 CML patients retrospectively. These patients, 4 females, 11 males, had undergone BMT during the first chronic phase after a preparative regimen consisting of total body irradiation (TBI) and cyclophosphamide; median age at BMT was 38 years (range 20-49 years). At the time of this study, 8 patients were in cytogenetic and/or clincal remission. Seven patients relapsed after BMT; all presented with Ph-chromosome-positive metaphases and BCR-ABL-positive cells at the time of relapse. In only 1 patient in hematologic remission was no positive PCR analysis obtained in the two samples tested. However, 5 patients have remained or became Ph-chromosome and/or PCR-positive after BMT without clinical symptoms of disease. In samples from another patient, transient presence of leukemic cells was observed only early after BMT. Clinically, these patients were relapse free at days 3,055, 2,581, 2,252, 1,846, 1,839, 1,747, and 1,173 after BMT, respectively. Based on these data, the presence of single BCR-ABL-positive cells > 1 year after BMT has no prognostic significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.