Background Genomics data is available to the scientific community after publication of research projects and can be investigated for a multitude of research questions. However, in many cases deposited data is only assessed and used for the initial publication, resulting in valuable resources not being exploited to their full depth. Main A likely reason for this is that many wetlab-based researchers are not formally trained to apply bioinformatic tools and may therefore assume that they lack the necessary experience to do so themselves. In this article, we present a series of freely available, predominantly web-based platforms and bioinformatic tools that can be combined in analysis pipelines to interrogate different types of next-generation sequencing data. Additionally to the presented exemplary route, we also list a number of alternative tools that can be combined in a mix-and-match fashion. We place special emphasis on tools that can be followed and used correctly without extensive prior knowledge in programming. Such analysis pipelines can be applied to existing data downloaded from the public domain or be compared to the results of own experiments. Conclusion Integrating transcription factor binding to chromatin (ChIP-seq) with transcriptional output (RNA-seq) and chromatin accessibility (ATAC-seq) can not only assist to form a deeper understanding of the molecular interactions underlying transcriptional regulation but will also help establishing new hypotheses and pre-testing them in silico.
Transcription factors (TFs) guide effector proteins like chromatin-modifying or -remodeling enzymes to distinct sites in the genome and thereby fulfill important early steps in translating the genome’s sequence information into the production of proteins or functional RNAs. TFs of the same family are often highly conserved in evolution, raising the question of how proteins with seemingly similar structure and DNA-binding properties can exert physiologically distinct functions or respond to context-specific extracellular cues. A good example is the TALE superclass of homeodomain-containing proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-redundant functions even in domains of co-expression and are subject to regulation by different signaling pathways. Here we provide an overview of posttranslational modifications that are associated with murine and human TALE-homeodomain proteins and discuss their possible importance for the biology of these TFs.
Gastric cancer (GC) is the 3rd leading cause of cancer mortality worldwide, therefore providing novel diagnostic and treatment options is crucial for at risk groups. The serine/threonine kinase doublecortin-like kinase 1 (DCLK1) is a proposed driver of GC with frequent amplification and somatic missense mutations yet the molecular mechanism how DCLK1 mediates tumorigenesis is poorly understood. We report how DCLK1 expression orchestrates complementary cancer cell intrinsic and extrinsic processes leading to a comprehensive pro-invasive and pro-metastatic reprogramming of cancer cells and tumor stroma in a DCLK1 kinase-dependent manner. Mechanistically, we identify the chemokine CXCL12 as a key promoter of the pro-tumorigenic properties downstream of DCLK1. Importantly, inhibition of the DCLK1 kinase domain reverses the pro-tumorigenic and pro-metastatic phenotype. Together, this study establishes DCLK1 as a promising, targetable master regulator of GC.TeaserDCLK1 is a druggable cancer driver of GC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.