Natural Killer (NK) cells play an important role in the control of viral infections, recognizing virally infected cells through a variety of activating and inhibitory receptors1–3. Epidemiological and functional studies have recently suggested that NK cells can also contribute to the control of HIV-1 infection through recognition of virally infected cells by both activating and inhibitory Killer Immunoglobulin-like receptors (KIRs)4–7. However, it remains unknown whether NK cells can directly mediate antiviral immune pressure in vivo in humans. Here we describe KIR-associated amino acid polymorphisms in the HIV-1 sequence of chronically infected individuals on a population level. We show that these KIR-associated HIV-1 sequence polymorphisms can enhance the binding of inhibitory KIRs to HIV-1-infected CD4+ T cells, leading to reduced antiviral activity of KIR+ NK cells. These data demonstrate that KIR+ NK cells can place immunological pressure on HIV-1, and that the virus can evade such NK cell mediated immune pressure by selecting for sequence polymorphisms, as previously described for virus-specific T cells and neutralizing antibodies8. NK cells might therefore play a previously underappreciated role in contributing to viral evolution.
Inhibition of natural killer (NK) cells is mediated by MHC class I receptors including the killer cell Ig-like receptor (KIR). We demonstrate that HLA-C binding peptides can function as altered peptide ligands for KIR and antagonize the inhibition mediated by KIR2DL2/ KIR2DL3. Antagonistic peptides promote clustering of KIR at the interface of effector and target cells, but do not result in inhibition of NK cells. Our data show that, as for T cells, small changes in the peptide content of MHC class I can regulate NK cell activity.killer cell immunoglobulin-like receptors | MHC class I
Dendritic cells (DCs) and natural killer (NK) cells have central roles in antiviral immunity by shaping the quality of the adaptive immune response to viruses and by mediating direct antiviral activity. HIV-1 infection is characterized by a severe dysregulation of the antiviral immune response that starts during early infection. This Review describes recent insights into how HIV-1 infection affects DC and NK cell function, and the roles of these innate immune cells in HIV-1 pathogenesis. The importance of understanding DC and NK cell crosstalk during HIV infection for the developement of effective antiviral strategies is also discussed.
Important advancements in the development of novel mouse/human chimeras through the engraftment of human immune cells and tissues into immunodeficient mice, including the recently described humanized BLT mouse model, holds great promise to facilitate the in vivo study of human immune responses. However, little data exists regarding the extent to which cellular immune responses in humanized mice accurately reflect those seen in humans. As a model pathogen we infected humanized BLT mice with HIV-1 and characterized HIV-1-specific immune responses and viral evolution during the acute phase of infection. HIV-1-specific CD8+ T cell responses in these mice were found to closely resemble those in humans in terms of their specificity, kinetics and immunodominance. Viral sequence evolution also revealed rapid and highly reproducible escape from these responses, mirroring the adaptations to host immune pressures observed during natural HIV-1 infection. Moreover, mice expressing the protective HLA-B*57 allele exhibited enhanced control of viral replication, and restricted the same CD8+ T cell responses to conserved regions of HIV-1 Gag that are critical to its control of HIV-1 in humans. These data reveal that the humanized BLT mouse model appears to accurately recapitulate human pathogen-specific cellular immunity and the fundamental immunological mechanisms required to control a model human pathogen, aspects critical to the utility of a small animal model for human pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.