UV radiation (UVR) induces serious structural and functional alterations in human skin leading to skin aging and carcinogenesis. Reactive oxygen species are key players in UVR-mediated photodamage and induce the DNA-base-oxidized, intermediate 8-hydroxy-2'-deoxyguanosine (8-OHdG). Herein, we report the protective action of melatonin against UVR-induced 8-OHdG formation and depletion of antioxidative enzymes using ex vivo human full-thickness skin exposed to UVR in a dose (0, 100, 300 mJ/cm(2))- and time-dependent manner (0, 24, 48 hr post-UVR). Dynamics of depletion of antioxidative enzymes including catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), or 8-OHdG formation were studied by real-time PCR and immunofluorescence/immunohistochemical staining. UVR-treated skin revealed significant and immediate (0 hr 300 mJ/cm(2)) reduction of gene expression, and this effect intensified within 24 hr post-UVR. Simultaneous increase in 8-OHdG-positive keratinocytes occurred already after 0 hr post-UVR reaching 71% and 99% up-regulation at 100 and 300 mJ/cm(2), respectively (P < 0.001). Preincubation with melatonin (10(-3) M) led to 32% and 29% significant reductions in 8-OHdG-positive cells and the prevention of antioxidative enzyme gene and protein suppression. Thus, melatonin was shown to play a crucial role as a potent antioxidant and DNA protectant against UVR-induced oxidative damage in human skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.