Satellite cells reside in defined niches and are activated upon skeletal muscle injury to facilitate regeneration. Mechanistic studies of skeletal muscle regeneration are hampered by the inability to faithfully simulate satellite cell biology in vitro. We sought to overcome this limitation by developing tissue engineered skeletal muscle (ESM) with (1) satellite cell niches and (2) the capacity to regenerate after injury. ESMs contained quiescent Pax7‐positive satellite cells in morphologically defined niches. Satellite cells could be activated to repair (i) cardiotoxin and (ii) mechanical crush injuries. Activation of the Wnt‐pathway was essential for muscle regeneration. Finally, muscle progenitors from the engineered niche developed de novo ESM in vitro and regenerated skeletal muscle after cardiotoxin‐induced injury in vivo. We conclude that ESM with functional progenitor niches reminiscent of the in vivo satellite cell niches can be engineered in vitro. ESM may ultimately be exploited in disease modeling, drug screening, or muscle regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.