The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein: ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.
Summary Phloem sap contains a large number of macromolecules, including proteins and RNAs from different classes. Proteome analyses of phloem samples from different plant species under denaturing conditions identified hundreds of proteins potentially involved in diverse processes. Surprisingly, these studies also found a significant number of ribosomal and proteasomal proteins. This led to the suggestion that active ribosome and proteasome complexes might be present in the phloem, challenging the paradigm that protein synthesis and turnover are absent from the enucleate sieve elements of angiosperms. However, the existence of such complexes has as yet not been demonstrated.In this study we used three‐dimensional gel electrophoresis to separate several protein complexes from native phloem sap from Brassica napus. Matrix‐assisted laser desorption ionization‐time of flight MS analyses identified more than 100 proteins in the three major protein‐containing complexes.All three complexes contained proteins belonging to different ribosomal fragments and blue native northern blot confirmed the existence of ribonucleoprotein complexes. In addition, one complex contained proteasome components and further functional analyses confirmed activity of a proteasomal degradation pathway and showed a large number of ubiquitinated phloem proteins.Our results suggest specialized roles for ubiquitin modification and proteasome‐mediated degradation in the phloem.
Sampling the phloem of higher plants is often laborious and significantly dependent on the plant species. However, proteome studies under denaturing conditions could be achieved in different plant species. Native protein:protein and protein:nucleic acid complexes from phloem samples have as yet scarcely been analyzed, although they might play important roles in maintenance of this specialized compartment or in long-distance signaling. Large molecular assemblies can be isolated using a blue native gel electrophoresis (BN-PAGE). Their protein components can be separated by a subsequent sodium dodecyl sulfate PAGE (SDS-PAGE). However, proteins with similar molecular weights co-migrate, what can hinder protein identification by mass spectrometry. Combining BN-PAGE with two different denaturing gel electrophoresis steps, namely Tris-Tricine-urea and SDS-PAGE, enables the additional separation of proteins according to their hydrophilicity/hydrophobicity and thus increases resolution and the success of protein identification. It even allows distinguishing proteins that only differ in their posttranslational modifications. In addition, blue native northern blotting can be applied to identify the RNA components in macromolecular complexes. We show that our protocol is suitable to unravel the protein and RNA components of native protein:protein and ribonucleoprotein (RNP) complexes occurring in phloem samples. Combining a blue native PAGE with two different denaturing PAGE steps can help to separate different kinds of large protein complexes, and also enables an increased identification rate of their components by mass spectrometry. Furthermore, the protocol is robust enough to simultaneously detect potentially bound nucleic acids within single protein complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.