Genetic deletion of cannabinoid CB1 receptors or diacylglycerol lipase alpha (DAGLa), the main enzyme involved in the synthesis of the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG), produced profound phenotypes in animal models of depression-related behaviors. Furthermore, clinical studies have shown that antagonists of CB1 can increase the incidence and severity of major depressive episodes. However, the underlying pathomechanisms are largely unknown. In this study, we have focused on the possible involvement of astrocytes. Using the highly sensitive RNAscope technology, we show for the first time that a subpopulation of astrocytes in the adult mouse brain expresses Dagla, albeit at low levels. Targeted lipidomics revealed that astrocytic DAGLa only accounts for a minor percentage of the steadystate brain 2-AG levels and other arachidonic acid derived lipids like prostaglandins. Nevertheless, the deletion of Dagla in adult mouse astrocytes had profound behavioral consequences with significantly increased depressive-like behavioral responses and striking effects on maternal behavior, corresponding with increased levels of serum progesterone and estradiol. Our findings therefore indicate that lipids from the DAGLa metabolic axis in astrocytes play a key regulatory role in affective behaviors.
The endocannabinoid system modulates adult hippocampal neurogenesis by promoting the proliferation and survival of neural stem and progenitor cells (NSPCs). This is demonstrated by the disruption of adult neurogenesis under two experimental conditions: (1) NSPC-specific deletion of cannabinoid receptors and (2) constitutive deletion of the enzyme diacylglycerol lipase alpha (DAGLa) which produces the endocannabinoid 2-arachidonoylglycerol (2-AG). However, the specific cell types producing 2-AG relevant to neurogenesis remain unknown. Here we sought to identify the cellular source of endocannabinoids in the subgranular zone of the dentate gyrus (DG) in hippocampus, an important neurogenic niche. For this purpose, we used two complementary Cre-deleter mouse strains to delete Dagla either in neurons, or in astroglia and NSPCs. Surprisingly, neurogenesis was not altered in mice bearing a deletion of Dagla in neurons (Syn-Dagla KO), although neurons are the main source for the endocannabinoids in the brain. In contrast, a specific inducible deletion of Dagla in NPSCs and astrocytes (GLAST-CreERT2-Dagla KO) resulted in a strongly impaired neurogenesis with a 50% decrease in proliferation of newborn cells. These results identify Dagla in NSPCs in the DG or in astrocytes as a prominent regulator of adult hippocampal neurogenesis. We also show a reduction of Daglb expression in GLAST-CreERT2-Dagla KO mice, which may have contributed to the neurogenesis phenotype.
The endocannabinoid system (ECS) modulates adult hippocampal neurogenesis by promoting the proliferation and survival of progenitor cells. Specifically, deleting cannabinoid CB1 receptors on neuronal stem cells (NSCs) or the constitutive deletion of the endocannabinoid 2-arachidonoylglycerol (2-AG) producing enzyme diacylglycerol lipase alpha (DAGLa) disrupts adult hippocampal neurogenesis. However, it is not known which cells are the producers of 2-AG relevant to neurogenesis. In this paper, we investigated the cellular source of endocannabinoids in the subgranular zone (SGZ) of the hippocampus, an important neurogenic niche. For this purpose, we used two complementary Cre-deleter mouse strains to delete DAGLa either in neurons or astroglia and neuronal progenitor cells. Surprisingly, neurogenesis was not altered in mice with a specific deletion of Dagla in neurons (Syn-Dagla KO), although these cells are the main source for the endocannabinoids in the brain. In contrast, mice with a specific inducible deletion of Dagla in neuronal progenitor cells and astrocytes (GLAST-CreERT2-Dagla KO) showed a strongly impaired neurogenesis with significantly reduced proliferation and survival of newborn cells. These results identify Dagla in neuronal progenitor cells in the SGZ of dentate gyrus or in astrocytes, as the cellular source for 2-AG in adult hippocampal neurogenesis. In summary, 2-AG produced by progenitor cells or astrocytes in the SGZ regulates adult hippocampal neurogenesis. The implications of these findings and the depressive-like phenotype in Dagla-deficient genetic mouse models are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.