Controlling the course of the Coronavirus Disease 2019 (COVID-19) pandemic will require widespread deployment of consistent and accurate diagnostic testing of the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Ideally, tests should detect a minimum viral load, be minimally invasive, and provide a rapid and simple readout. Current Food and Drug Administration (FDA)-approved RT-qPCR-based standard diagnostic approaches require invasive nasopharyngeal swabs and involve laboratory-based analyses that can delay results. Recently, a loop-mediated isothermal nucleic acid amplification (LAMP) test that utilizes colorimetric readout received FDA approval. This approach utilizes a pH indicator dye to detect drop in pH from nucleotide hydrolysis during nucleic acid amplification. This method has only been approved for use with RNA extracted from clinical specimens collected via nasopharyngeal swabs. In this study, we developed a quantitative LAMP-based strategy to detect SARS-CoV-2 RNA in saliva. Our detection system distinguished positive from negative sample types using a handheld instrument that monitors optical changes throughout the LAMP reaction. We used this system in a streamlined LAMP testing protocol that could be completed in less than 2 h to directly detect inactivated SARS-CoV-2 in minimally processed saliva that bypassed RNA extraction, with a limit of detection (LOD) of 50 genomes/reaction. The quantitative method correctly detected virus in 100% of contrived clinical samples spiked with inactivated SARS-CoV-2 at either 13 (50 genomes/reaction) or 23 (100 genomes/reaction) of the LOD. Importantly, the quantitative method was based on dynamic optical changes during the reaction and was able to correctly classify samples that were misclassified by endpoint observation of color.
Constraints related to sample preparation are some of the primary obstacles to widespread deployment of molecular diagnostics for rapid detection of trace quantities (≤103 CFU/mL) of food-borne pathogens. In this research, we report a sample preparation method using a novel handheld electroflotation system to concentrate and recover dilute quantities (102−103 CFU/mL) of Escherichia coli (E. coli) 25922 in artificially contaminated samples for reliable, rapid detection by loop-mediated isothermal amplification (LAMP). To protect suspended cells from shear stresses at bubble surfaces, a non-ionic surfactant (Pluronic-F68) and flocculant (chitosan oligosaccharide) were used to aggregate cells and reduce their surface hydrophobicity. Effective conditions for recovery were determined through multifactorial experiments including various concentrations of Pluronic-F68 (0.001, 0.01, 0.1, 1 g L-1), chitosan oligosaccharide (0.01, 0.1, 1, 10 g L-1), bacteria (102, 103, 104 CFU/mL E. coli 25922), recovery times (10, 15 and 20 minutes), and degrees of turbulent gas flux (“high” and “low”). The automated electroflotation system was capable of concentrating effectively all of the bacteria from a large sample (380 mL 0.1 M potassium phosphate buffer containing 102 CFU/mL E. coli) into a 1 mL recovered fraction in less than 30 minutes. This enabled detection of bacterial contaminants within 2 hours of collecting the sample, without a specialized laboratory facility or traditional enrichment methods, with at least a 2–3 order of magnitude improvement in detection limit compared to direct assay with LAMP.
Abstract. The power of portable molecular diagnostic systems for detection of pathogenic microorganisms in food and environmental samples is largely limited by small assay volumes (typically 1 to 5 µL), making direct detection of trace contamination (i.e., <104 CFU mL-1) unreliable. To improve detection limits for pathogens dispersed on an ecological scale, we developed a portable point-of-care (POC) sample preparation system using electroflotation (EF) to recover small quantities of these organisms from samples of hundreds of milliliters. Electrolysis reactions, supported on platinum-coated titanium electrodes, generate hydrogen and oxygen microbubbles that impel and displace suspended cells into a recovered concentrate. Samples were prepared by inoculating 380 mL of sterilized phosphate buffer (0.1 M, pH 6.6) with stock culture of ATCC 25922 to final concentrations ranging from 102 to 104 CFU mL-1. Samples were subjected to 10, 15, and 20 min durations of EF treatment under high and low turbulence conditions. We used a loop-mediated amplification (LAMP) assay with primers targeting a single-copy gene (glycerate kinase) in generic to evaluate the effects of EF treatment on concentration and recovery of detectable cell material. LAMP failed to detect in all untreated (control) samples at concentrations below 104 CFU mL-1 but was able to detect in 102 CFU mL-1 samples subjected to various conditions of EF treatment. Two-way ANOVA showed significant differences in detection rates between EF treatment durations for both high (p = 0.0019) and low turbulence (p = 0.002). Dunnett’s multiple comparison tests identified five process conditions resulting in significant (p < 0.05) differences in detection between treatments and the control. Keywords: Biotechnology, Electrolysis, Food pathogens, Microbubbles, Molecular diagnostics, Pathogen detection, POC sample preparation.
Controlling the course of the COVID-19 pandemic will require widespread deployment of consistent and accurate diagnostic testing of the novel coronavirus SARS-CoV-2. Ideally, tests should detect a minimum viral load, be minimally invasive, and provide a rapid and simple readout. Current FDA-approved RT-qPCR-based standard diagnostic approaches require invasive nasopharyngeal swabs and involve laboratory-based analyses that can delay results. Recently, a loop mediated isothermal nucleic acid amplification (LAMP) test that utilizes colorimetric readout received FDA approval. This approach utilizes a pH indicator dye to detect drop in pH from nucleotide hydrolysis during nucleic acid amplification. This method has only been approved for use with RNA extracted from clinical specimens collected via nasopharyngeal swabs. In this study, we developed a quantitative LAMP-based strategy to detect SARS-CoV-2 RNA in saliva. Our detection system distinguished positive from negative sample types using a handheld instrument that monitors optical changes throughout the LAMP reaction. We used this system in a streamlined LAMP testing protocol that could be completed in less than two hours to directly detect inactivated SARS-CoV-2 in minimally processed saliva that bypassed RNA extraction, with a limit of detection (LOD) of 50 genomes/reaction. The quantitative method correctly detected virus in 100% of contrived clinical samples spiked with inactivated SARS- CoV-2 at either 1X (50 genomes/reaction) or 2X (100 genomes/reaction) of the LOD. Importantly the quantitative method was based on dynamic optical changes during the reaction so was able to correctly classify samples that were misclassified by endpoint observation of color.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.