Background:
Neuroimaging studies show that obsessive–compulsive disorder (OCD) is characterized by an alteration of the cortico–striato–thalamo–cortical (CSTC) system in terms of an imbalance of activity between the direct and the indirect loop of the CSTC. As resting-state functional connectivity (FC) studies investigated only specific parts of the CSTC in patients with OCD up to now, the present study aimed at exploring FC in the CSTC as a whole.
Methods:
We investigated potential alterations in resting-state FC within the CSTC system in 44 OCD patients and 40 healthy controls by taking into consideration all relevant nodes of the direct and indirect CSTC loop.
Results:
Compared to healthy controls, OCD patients showed an increased FC between the left subthalamic nucleus (STN) and the left external globus pallidus (GPe), as well as an increased FC between the left GPe and the left internal globus pallidus (GPi).
Conclusion:
These findings may contribute to a better understanding of the OCD pathophysiology by providing further information on the connectivity alterations within specific regions of the CSTC system. In particular, increased FC between the STN and the left GPe may play a major role in OCD pathology. This assumption is consistent with the fact that these regions are also the main target sites of therapeutic deep brain stimulation in OCD.
Background: Resting-state functional MRI (fMRI) studies commonly report alterations in 3 core networks in obsessive-compulsive disorder (OCD) -the frontoparietal network, the default mode network and the salience network -defined by functionally connected infraslow oscillations in ongoing brain activity. However, most of these studies observed static functional connectivity in the brains of patients with OCD. Methods: To investigate dynamic functional connectivity alterations and widen the evidence base toward the triple network model in OCD, we performed group-based independent component and sliding time window analyses in 49 patients with OCD and 41 healthy controls. Results: The traditional independent component analysis showed alterations in the left frontoparietal network as well as between the left and right frontoparietal networks in patients with OCD compared with healthy controls. For dynamic functional connectivity, the sliding time window approach revealed peak dysconnectivity between the left and right frontoparietal networks and between the left frontoparietal network and the salience network. Limitations: The number of independent components, noise in the resting-state fMRI images, the heterogeneity of the OCD sample, and comorbidities and medication status in the patients could have biased the results. Conclusion: Disrupted modulation of these intrinsic brain networks may contribute to the pathophysiology of OCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.