Various genomic DNA sequences including a MYC promoter sequence are amenable to the formation of a G-quadruplex featuring a snap-back loop with the incorporation of a 3′-terminal guanine into the quadruplex core. To evaluate relative stabilities and ligand binding in more detail, optical, microcalorimetric, and NMR structural studies were performed on both a minimal mutant sequence Pu22T that exclusively folds into a snap-back loop quadruplex and a parallel MYC quadruplex proposed to be the most relevant fold of the MYC promoter in a cellular environment. Similar thermal stabilities for Pu22T and MYC suggest the coexistence of both quadruplexes when derived from a sequence able to fold into both topologies. Isothermal titration calorimetry indicates a mostly identical enthalpy-driven strong binding of an indoloquinoline ligand but with a reduced number of high-affinity binding sites in Pu22T in line with a novel modified FRET competitive melting assay. Corroborated by fluorescence titrations using 2-aminopurine as a fluorescent probe, NMR chemical shift footprints show binding of the ligand at the Pu22T 5′-outer tetrad with the formation of a binding pocket. On the other hand, steric restrictions due to the snap-back loop severely restrict ligand stacking on the 3′-outer tetrad of Pu22T.
Abstract. Biocides used in film protection products leaching from facades are known to be a potential threat to the environment. This study identifies individual sources and entry pathways in a small-scale urban area. We investigate emissions of commonly used biocides (terbutryn, diuron, and octylisothiazolinone – OIT) and some of their transformation products (TPs; diuron-desmethyl, terbumeton, terbuthylazine-2-hydroxy, and terbutryn-desethyl) from a 2 ha residential area 13 years after construction has ended. Sampling utilizes existing urban water infrastructure representative for decentralized storm water management in central and northern Europe and applies a two-step approach to (a) determine the occurrence of biocides above water quality limits (i.e., predicted no-effect concentration, PNEC) and (b) identify source areas and characterize entry pathways into surface and groundwater. Monitoring focuses on the analysis of selected biocides and TPs by liquid chromatography–mass spectrometry/mass spectrometry (LC-MS/MS) in water samples taken from facades, rainwater pipes, drainage, and storm water infiltration systems. In standing water in a swale, we found high concentrations of diuron (174 ng L−1) and terbutryn (40 ng L−1) above PNEC for surface water. We confirmed expected sources, i.e., facades. Sampling of rain downpipes from flat roofs identified additional sources of all biocides and two TPs of terbutryn and one TP of diuron. Diuron and terbutryn were found in three drainage pipes representing different entry pathways of biocides. In one drainage pipe collecting road runoff, only diuron-desmethyl and terbutryn-desethyl were detected. In two other drainage pipes collecting infiltrated water through soil, terbuthylazine-2-hydroxy was additionally detected. One of the pipes collecting infiltrated water through soil concentration showed the highest concentrations of terbutryn and two of its TPs (terbutryn-desethyl and terbuthylazine-2-hydroxy). This suggests a high leaching potential of terbutryn. The applied two-step approach determined sources and pathways of biocide and their TPs. This study contributes to expanding knowledge on their entry and distribution and, thus, eventually towards reducing emissions.
Abstract. Biocides used in film protection products leaching from facades are known to be a potential threat for the environment. This study identifies individual sources and entry pathways in a small-scale urban area. We investigate emissions of commonly used biocides (terbutryn, diuron and octylisothiazolinone (OIT)) and some of their transformation products (TPs; diuron-desmethyl, terbumeton, terbuthylazin-2-hydroxy and terbutryn-desethyl) from a 2 ha residential area, 13 years after construction has ended. Sampling utilizes existing urban water infrastructure representative for decentralized storm water management in central and northern Europe and applies a two-step approach to (a) determine the occurrence of biocides above water quality limits (i.e. predicted no effect concentration, PNEC) and (b) identify source areas and characterize entry pathways into surface- and groundwater. Monitoring focuses on the analysis of selected biocides and TPs by LC-MS/MS in water samples taken from facades, rainwater pipes, drainage and storm water infiltration systems. In standing water in a swale we found high concentrations of diuron (174 ng L−1) and terbutryn (40 ng L−1) above PNEC for surface water. We confirmed expected sources, i.e. facades, but sampling of rain downpipes from flat roofs identified additional sources of all biocides and two TPs of terbutryn and one TP of diuron. Diuron and terbutryn were found in three drainage pipes representing different entry pathways of biocides. In one drainage pipe collecting road runoff only diuron-desmethyl and terbutryn-desethyl were detected. In two other drainage pipes collecting infiltrated water through soil additionally terbuthylazin-2-hydroxy was detected. Concentration of terbutryn and two of its TPs (terbutryn-desethyl and terbuthylazin-2-hydroxy) were highest in one of the pipes collecting infiltrated water through soil which suggests a high leaching potential of this biocide. This study shows that target-oriented monitoring of urban water infrastructure for biocides and their TPs allows for a better identification of biocide emissions into urban aquatic environments.
<p>Biocides used as film protection products to prevent algae and fungi growth on facades wash off during rain events and represent a potential risk to the environment. So far, urban monitoring studies focused mainly on large heterogeneous urban areas. Thus, little information about individual sources and entry pathways were obtained. However, this is important to understand the potential risk of biocide entry to groundwater.</p><p>This study investigates biocide emissions from a 2 ha residential area, 13 years after construction has ended. Investigated substances represent commonly used biocides for film protection, i.e. Terbutryn, Diuron and Octylisothiazolinone (OIT) and some of their known transformation products (TPs, Diuron-Desmethyl, Terbumeton, 2-Hydroxy-Terbutylazin and Terbutryn-Desethyl). We used existing urban infrastructure for efficient monitoring and applied a three-step approach to (a) determine the overall relevance of biocides, (b) identify source areas and long-term emission and (c) characterize entry pathways into surface- and groundwater.</p><p>Initial sampling in the swale system gave an integrated signal from the entire district and confirmed the relevance of biocide leaching, more than a decade after construction. Concentrations peaked at 174 ng/L for Diuron and 40 ng/L for Terbutryn during a high magnitude event and were above PNEC values. During later events, transformation products were detected, though at lower concentrations. For all substances, source areas were identified in a second step. Artificial elution experiments confirmed expected sources, i.e. fa&#231;ades, but we also found additional sources through sampling of rainfall downpipes from flat roofs. A small part of the roof fa&#231;ade was repainted two years before sampling and thereby showed a magnitude higher leaching rates than the remaining fa&#231;ades. Since all biocide wash-off arrived on a flat roof and was drained by rainfall down pipes, we could estimate net biocide emission and arrived at 155 mg Diuron, 17 mg Terbutryn, 12 mg OIT and 17 mg Diuron-Desmethyl from a 10 m<sup>2</sup> painted fa&#231;ade area over a time period of two years. In a third step, we characterized entry pathways comparing samples from a drainage pipe that collected road runoff (surface pathway) with two others that collected infiltrated water on top of an underground garage (soil pathway). All drainage pipes showed Terbutryn, two of them also Diuron but none OIT. The drainage pipe representing the surface pathway showed a smaller number of individual transformation products but similar concentrations of parent compounds. One pipe representing the soil pathway had highest concentrations of Terbutryn and its TPs which suggests a high leaching potential of this biocide also away from concentrated infiltration in urban stormwater management infrastructure.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.