Due to their high-energy density, shape memory alloys (SMAs) are investigated as material for bending microactuators in applications of self-folding structures, realizing the concept of programmable matter. Here, for the numerical prediction of the electro-thermo-mechanical performance, the quantification of the time-dependent coupling effects in SMA materials during phase transformation is of crucial interest. Isothermal SMA material models cannot treat the time-dependent interaction between deformation, temperature and electric potential in thermally controlled actuation. In this paper, we extend an isothermal SMA model using standard thermodynamics (Coleman–Noll procedure) to treat the time-dependent behavior of polycrystalline SMAs. The model is implemented as a user material subroutine (UMAT) in a standard finite element (FE) code (Abaqus standard). The time-dependent loading of a tensile sample and a bending microactuator made from 20 $$\mu \hbox {m}$$ μ m thick SMA foil are simulated. A comparative study between experimental and simulation results on the thermoelastic and caloric effects during stress-induced phase transformation is presented. Joule heating simulations for shape recovery during both tensile and bending loading are conducted. Time-resolved temperature variations accompanying the loading and Joule heating processes are reported. The coupled SMA material model is found to be capable of approximating the time-dependent field quantities of a polycrystalline SMA microactuator subjected to electro-thermo-mechanical loading.
Conductive serpentine interconnects comprise fundamental building blocks (e.g., electrodes, antennas, wires) of many stretchable electronic systems. Here we present the first numerical and experimental studies of freestanding thin-film TiNiCuCo superelastic alloys for stretchable interconnects. The electrical resistivity of the austenite phase of a Ti53.3Ni30.9Cu12.9Co2.9 thin-film at room temperature was measured to be 5.43×10-7 Ω m, which is larger than reported measurements for copper thin-films (1.87×10-8 Ω m). Structuring the superelastic conductor to limit localized strain using a serpentine geometry led to freestanding interconnects that could reach maximum serpentine elongations of up to 153%. Finite element analysis (FEA) simulations predicted that superelastic serpentine interconnects can achieve significantly larger (~5X–7X) elastic elongations than copper for the same serpentine geometry. FEA predictions for stress distribution along the TiNiCuCo serpentine interconnect were experimentally verified by infrared imaging and tensile testing experiments. The superior mechanical advantages of TiNiCuCo were paired with the high electronic conductivity of copper, to create Cu/TiNiCuCo/Cu serpentine composites that were demonstrated to serve as freestanding electrical interconnects between two LEDs. The results presented in this manuscript demonstrate that thin-film superelastic alloys are a promising material class to improve the performance of conductors in stretchable and flexible electronics.
We present the design, fabrication, and characterization of single and antagonistic SMA microactuators allowing for uni- and bi-directional self-folding of origami-inspired devices, respectively. Test devices consist of two triangular tiles that are interconnected by double-beam-shaped SMA microactuators fabricated from thin SMA foils of 20 µm thickness with memory shapes set to a 180° folding angle. Bi-directional self-folding is achieved by combining two counteracting SMA microactuators. We present a macromodel to describe the engineering stress–strain characteristics of the SMA foil and to perform FEM simulations on the characteristics of self-folding and the corresponding local evolution of phase transformation. Experiments on single-SMA microactuators demonstrate the uni-directional self-folding and tunability of bending angles up to 180°. The finite element simulations qualitatively describe the main features of the observed torque-folding angle characteristics and provide further insights into the angular dependence of the local profiles of the stress and martensite phase fraction. The first antagonistic SMA microactuators reveal bi-directional self-folding in the range of −44° to +40°, which remains well below the predicted limit of ±100°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.