GNE myopathy is a recessive adult onset, slowly progressive distal and proximal myopathy, caused by mutations in the GNE gene. The most frequent mutation in GNE myopathy patients is the Middle Eastern founder mutation M712T. We have generated Gne (M712T/M712T) knockin mice. A high mortality rate in the first generation due to renal failure was recorded (as previously described). However, the following Gne (M712T/M712T) offspring generations could be classified into 3 phenotypic categories: severe, mild and without apparent phenotype. By further crossing between mice with no apparent phenotype, we were able to establish a colony of Gne (M712T/M712T) knockin mice with a high- and long-term survival rate, lacking any renal phenotype. These mice did not present any muscle phenotype (clinical or pathological) for up to 18 months. No correlation was found between the expression of any of the two mRNA Gne isoforms in muscle and the mouse genotype or phenotype. However, the expression of isoform 2 mRNA was significantly higher in the kidney of Gne (M712T/M712T) kidney affected mice compared with control. In contrast, the expression of UPR markers Bip, Chop and of the spliced form of XBP1, was upregulated in muscle of Gne (M712T/M712T) mice compared with controls, but was unchanged in the affected kidney. Thus, Gne defects can affect both muscle and kidney in mouse, but probably through different mechanisms.
Background: Mutations in GNE cause a recessive, adult onset myopathy characterized by slowly progressive distal and proximal muscle weakness. Knock-in mice carrying the most frequent mutation in GNE myopathy patients, Gne M743T/M743T , usually die few days after birth from severe renal failure, with no muscle phenotype. However, a spontaneous sub-colony remains healthy throughout a normal lifespan without any kidney or muscle pathology. Objective: We attempted to decipher the molecular mechanisms behind these phenotypic differences and to determine the mechanisms preventing the kidney and muscles from disease. Methods: We analyzed the transcriptome and proteome of kidneys and muscles of sick and healthy Gne M743T/M743T mice. Results: The sick Gne M743T/M743T kidney was characterized by up-regulation of extra-cellular matrix degradation related processes and by down-regulation of oxidative phosphorylation and respiratory electron chain pathway, that was also observed in the asymptomatic muscles. Surprisingly, the healthy kidneys of the Gne M743T/M743T mice were characterized by up-regulation of hallmark muscle genes. In addition the asymptomatic muscles of the sick Gne M743T/M743T mice showed upregulation of transcription and translation processes. Conclusions: Overexpression of muscle physiology genes in healthy Gne M743T/M743T mice seems to define the protecting mechanism in these mice. Furthermore, the strong involvement of muscle related genes in kidney may bridge the apparent phenotypic gap between GNE myopathy and the knock-in Gne M743T/M743T mouse model and provide new directions in the study of GNE function in health and disease.
GNE myopathy is an adult onset neuromuscular disorder characterized by slowly progressive distal and proximal muscle weakness, caused by missense recessive mutations in the GNE gene. Although the encoded bifunctional enzyme is well known as the limiting factor in the biosynthesis of sialic acid, no clear mechanisms have been recognized to account for the muscle atrophic pathology, and novel functions for GNE have been hypothesized. Two major issues impair studies on this protein. First, the expression of the GNE protein is minimal in human and mice muscles and there is no reliable antibody to follow up endogenous expression. Second, no reliable animal model is available for the disease and cellular models from GNE myopathy patients’ muscle cells (expressing the mutated protein) are less informative than expected. In order to broaden our knowledge on GNE functions in muscle, we have taken advantage of the CRISPR/Cas9 method for genome editing to first, add a tag to the endogenous Gne gene in mouse, allowing the determination of the spatiotemporal expression of the protein in the organism, using well established and reliable antibodies against the specific tag. In addition we have generated a Gne knock out murine muscle cell lineage to identify the events resulting from the total lack of the protein. A thorough multi-omics analysis of both cellular systems including transcriptomics, proteomics, phosphoproteomics and ubiquitination, unraveled novel pathways for Gne, in particular its involvement in cell cycle control and in the DNA damage/repair pathways. The elucidation of fundamental mechanisms of Gne in normal muscle may contribute to the identification of the disrupted functions in GNE myopathy, thus, to the definition of novel biomarkers and possible therapeutic targets for this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.