The agriculture, forestry and other land use sector are responsible for 24% (10–12 Pg CO2e per year) of anthropogenic greenhouse gas (GHG) emissions worldwide, with concomitant opportunities for mitigation. A scientific panel used deliberative methods to identify ten technical measures comprising 26 sub-measures to reduce GHG emissions from agriculture in France. Their abatement potential and cost are compared. The proposed measures concern nitrogen (N) management, management practices that increase carbon stocks in soils and biomass, livestock diets, and energy production and consumption on farms. Results show that the total abatement potential can be divided into three parts. One third of the cumulated abatement potential corresponds to sub-measures that can be implemented at a negative technical cost. These sub-measures focus on increased efficiency in input use including N fertilisers, animal feed and energy. The second third are sub-measures with moderate cost (<€25 per metric Mg of avoided CO2e). These sub-measures require specific investments or changes to cropping systems, but additional costs or lower incomes are partially compensated for by a reduction in other costs or by the production of other marketable products. The remaining third are high-cost sub-measures (>€25 per metric Mg of avoided CO2e). These require investment with no direct financial return, the purchase of particular inputs, dedicated labour time or involve production losses. Assuming additivity, the cumulated abatement is 32.3 Tg CO2e per year in 2030, but only 10 Tg (i.e. 10% of current agricultural emissions) when calculated under current inventory rules. This study confirms that a significant abatement potential exists in the agricultural sector, with two thirds of this potential at low or even negative cost. This is likely to be an underestimated as it is based on a status quo of the current agricultural system. Results also emphasise the need to upgrade inventory rules so that efforts to reduce emissions can be accounted for
Nitrogen (N) losses in agroecosystems are a major environmental and economic issue. This issue is particularly pronounced in oil palm cultivation because oil palm production area is expected to increase to 12 Mha by 2050. N fertilization in oil palm plantations is mainly provided by mineral fertilizers, palm oil mill by-products, and biological fixation using legume cover crops. N loss has a major environmental impact during cultivation. For instance, 48.7 % of the greenhouse gases emitted to produce 1 t of palm oil fruit are due to N fertilization. Actually, there is little comprehensive knowledge on how to calculate N budgets in oil palm plantation in order to optimize fertilization, taking into account N leaching and N gases emissions. Here we modeled knowledge about all N fluxes in an oil palm field following standard management practices of industrial plantations, on a mineral soil, from planting to felling after a 25-year-growth cycle. The largest fluxes are internal fluxes, such as oil palm uptake, with 40-380 kg N ha, and the decomposition of felled palms at the end of the cycle, with 465-642 kg N ha
Abstract. Oil palm is the most rapidly expanding tropical perennial crop. Its cultivation raises environmental concerns, notably related to the use of nitrogen (N) fertilisers and the associated pollution and greenhouse gas emissions. While numerous and diverse models exist to estimate N losses from agriculture, very few are currently available for tropical perennial crops. Moreover, there is a lack of critical analysis of their performance in the specific context of tropical perennial cropping systems. We assessed the capacity of 11 models and 29 sub-models to estimate N losses in a typical oil palm plantation over a 25-year growth cycle, through leaching and runoff, and emissions of NH3, N2, N2O, and NOx. Estimates of total N losses were very variable, ranging from 21 to 139 kg N ha−1 yr−1. On average, 31 % of the losses occurred during the first 3 years of the cycle. Nitrate leaching accounted for about 80 % of the losses. A comprehensive Morris sensitivity analysis showed the most influential variables to be soil clay content, rooting depth, and oil palm N uptake. We also compared model estimates with published field measurements. Many challenges remain in modelling processes related to the peculiarities of perennial tropical crop systems such as oil palm more accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.