The three human alleles of apolipoprotein E (APOE) differentially influence outcome after CNS injury and affect one's risk of developing Alzheimer's disease (AD). It remains unclear how ApoE isoforms contribute to various AD-related pathological changes (e.g., amyloid plaques and synaptic and neuron loss). Here, we systematically examined whether apoE isoforms (E2, E3, E4) exhibit differential effects on dendritic spine density and morphology in APOE targeted replacement (TR) mice, which lack AD pathological changes. Using Golgi staining, we found age-dependent effects of APOE4 on spine density in the cortex. The APOE4 TR mice had significantly reduced spine density at three independent time points (4 weeks, 3 months, and 1 year, 27.7% Ϯ 7.4%, 24.4% Ϯ 8.6%, and 55.6% Ϯ 10.5%, respectively) compared with APOE3 TR mice and APOE2 TR mice. Additionally, in APOE4 TR mice, shorter spines were evident compared with other APOE TR mice at 1 year. APOE2 TR mice exhibited longer spines as well as significantly increased apical dendritic arborization in the cortex compared with APOE4 and APOE3 TR mice at 4 weeks. However, there were no differences in spine density across APOE genotypes in hippocampus. These findings demonstrate that apoE isoforms differentially affect dendritic complexity and spine formation, suggesting a role for APOE genotypes not only in acute and chronic brain injuries including AD, but also in normal brain functions.
Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive function; however, the in vivo effect of enhanced Reelin signaling on cognitive function and synaptic plasticity in wild-type mice is unknown. The present studies test the hypothesis that in vivo enhancement of Reelin signaling can alter synaptic plasticity and ultimately influence processes of learning and memory. Purified recombinant Reelin was injected bilaterally into the ventricles of wild-type mice. We demonstrate that a single in vivo injection of Reelin increased activation of adaptor protein Disabled-1 and cAMP-response element binding protein after 15 min. These changes correlated with increased dendritic spine density, increased hippocampal CA1 long-term potentiation (LTP), and enhanced performance in associative and spatial learning and memory. The present study suggests that an acute elevation of in vivo Reelin can have longterm effects on synaptic function and cognitive ability in wild-type mice.
For patients with a true penicillin allergy, we recommend broader gram-negative coverage with alternative antibiotics, such as cefuroxime, when undergoing free tissue transfer in the head and neck.
Fyn is a Src-family tyrosine kinase that affects long term potentiation (LTP), synapse formation, and learning and memory. Fyn is also implicated in dendritic spine formation both in vitro and in vivo. However, whether Fyn’s regulation of dendritic spine formation is brain-region specific and age-dependent is unknown. In the present study, we systematically examined whether Fyn altered dendritic spine density and morphology in the cortex and hippocampus and if these effects were age-dependent. We found that Fyn knockout mice trended toward a decrease in dendritic spine density in cortical layers II/III, but not in the hippocampus, at 1 month of age. Additionally, Fyn knockout mice had significantly decreased dendritic spine density in both the cortex and hippocampus at 3 months and 1 year, and Fyn’s effect on dendritic spine density was age-dependent in the hippocampus. Moreover, Fyn knockout mice had wider spines at the three time points (1 month, 3 months, 1 year) in the cortex. These findings suggest that Fyn regulates dendritic spine number and morphology over time and provide further support for Fyn’s role in maintaining proper synaptic function in vivo.
Background Propofol total intravenous anesthesia (TIVA) is increasingly popular in pediatric anesthesia, but education on its use is variable and over‐dosage adverse events are not uncommon. Recent work suggests that electroencephalogram (EEG) parameters can guide propofol dosing in the pediatric population. This education quality improvement project aimed to implement a standardized EEG TIVA training program over 12 months in a large pediatric anesthesia division. Methods The division consisted of 63 faculty, 11 clinical fellows, 32 residents, and 28 nurse anesthetists at the Children's Hospital of Philadelphia. The program was assessed for effectiveness (a significant improvement in EEG knowledge scores), scalability (training 50% of fellows and staff), and sustainability (recurring EEG lectures for 80% of rotating residents and 100% of new fellows and staff). The key drivers included educational content development (lectures, articles, and hand‐outs), training a cohort of EEG TIVA trainers, intraoperative teaching (teaching points and dosing tables), decision support tools (algorithms and anesthesia electronic record pop‐ups), and knowledge tests (written exam and verbal quiz during cases). Results Over 12 months, 78.5% of the division (62/79) completed EEG training and test scores improved (mean score 38% before training vs 59% after training, p < .001). Didactic lectures were given to 100% of the fellows, 100% (11/11) of new staff, and 80% (4/5 blocks) of rotating residents. Conclusion This quality improvement education project successfully trained pediatric anesthesia faculty, staff, residents, and fellows in EEG‐guided TIVA. The training program was effective, scalable, and sustainable over time for newly hired faculty staff and rotating fellows and residents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.