Summary:Purpose: Long-term treatment with antiepileptic drugs (AEDs) is associated with increased risk of fractures. Phenytoin (PHT) and valproate (VPA) have both been suggested to influence bone health, whereas levetiracetam (LEV) is scarcely studied. The present study compares the effect of these AEDs on bone mass, biomechanical strength, and bone turnover in rats.Methods: Female rats received PHT (50mg/kg), VPA (300mg/kg), or LEV (50 and 150mg/kg) for 90 days. Dissected femurs were analyzed using dual energy x-ray absorptiometry (DXA), three-point cantilever bending, and histomorphological evaluation. Serum levels of biochemical bone turnover markers were monitored using immunoassay quantification.Results: PHT and VPA reduced bone mineral density (BMD) and content (BMC) in one or more bone compartments, whereas LEV did not. VPA induced increased bone turnover, whereas modest changes were observed for PHT. Interestingly, low-dose LEV was associated with reduced biomechanical strength of the femoral neck (mainly trabecular bone). In addition, low-dose LEV treatment resulted in significantly reduced levels of serum osteocalcin, a marker of bone formation. Histomorphological analyses indicated increased retention of cartilage remnants at the growth plate metaphysis of rats treated with low-dose LEV vs. controls.Conclusions: PHT, VPA, and LEV exert differential effects on bone mass and strength, suggesting different mechanisms of action. The weakening effect of low-dose LEV on the femoral neck, despite a constant BMD, suggests a primary effect on bone quality. These findings warrant further human studies of possible adverse effects of LEV on bone development and growth, particularly in children and adolescents.
Our results suggest that the systemic effects of estrogen and vitamin D deficiency are not crucial for fracture healing or mechanical properties of the callus.
Tartrate-resistant acid phosphatase (TRAP) is well known as an osteoclast marker; however, a recent study from our group demonstrated enhanced number of TRAP + osteocytes as well as enhanced levels of TRAP located to intracellular vesicles in osteoblasts and osteocytes in experimental osteoporosis in rats. Such vesicles were especially abundant in osteoblasts and osteocytes in cancellous bone as well as close to bone surface and intracortical remodeling sites. To further investigate TRAP in osteoblasts and osteocytes, long bones from young, growing rats were examined. Immunofluorescence confocal microscopy displayed co-localization of TRAP with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in hypertrophic chondrocytes and diaphyseal osteocytes with Pearson’s correlation coefficient ≥0.8. Transmission electron microscopy showed co-localization of TRAP and RANKL in lysosomal-associated membrane protein 1 (LAMP1) + vesicles in osteoblasts and osteocytes supporting the results obtained by confocal microscopy. Recent in vitro data have demonstrated OPG as a traffic regulator for RANKL to LAMP1 + secretory lysosomes in osteoblasts and osteocytes, which seem to serve as temporary storage compartments for RANKL. Our in situ observations indicate that TRAP is located to RANKL-/OPG-positive secretory lysosomes in osteoblasts and osteocytes, which may have implications for osteocyte regulation of osteoclastogenesis.Electronic supplementary materialThe online version of this article (doi:10.1007/s00418-014-1272-4) contains supplementary material, which is available to authorized users.
Tartrate-resistant acid phosphatase (TRAP) is known as an osteoclast marker, but osteoblasts and osteocytes in the vicinity of bone remodeling sites also express TRAP. Cell culture studies suggest that osteoblasts endocytose osteoclastic TRAP for inactivation. To evaluate whether changes in osteoclast activity could alter TRAP expression in osteoblasts and/or osteocytes in vivo, we studied the ovariectomized and vitamin D-deficient rat (Ovx-D) and rats healing from rickets. Bone sections were analyzed for TRAP gene expression by in situ hybridization, TRAP protein by immunogold labeling, and TRAP enzyme activity using the fluorescent substrate ELF97. Osteoblasts and osteocytes close to intracortical remodeling sites and bone surfaces demonstrated TRAP, most prominently in cancellous bone and osteocytes. Intracellular TRAP was located to electron-dense vesicles with similar morphology in both cell types. Ovx-D increased osteoclast activity (p < 0.001) and ELF97+ osteocytes (p < 0.05) in cancellous bone, but no corresponding increase was observed in the osteocyte lacunar area. The level of TRAP+ vesicles in cortical osteoblasts (p < 0.01) in Ovx-D rats was also increased. Enhanced osteoclast activity was noted in healing rickets after 72 h (p < 0.05), but no differences in TRAP expression were detected in osteoblasts or osteocytes. Thus, increased osteoclast activity does not affect TRAP expression in osteoblasts and osteocytes, favoring the notion that increased TRAP in these cells is rather due to increased synthesis. Although the role of TRAP in osteoblasts and osteocytes remains elusive, we speculate that the function is related to the capability of the enzyme to regulate the phosphorylation of proteins known to be expressed by these cells.Electronic supplementary materialThe online version of this article (doi:10.1007/s00223-013-9834-3) contains supplementary material, which is available to authorized users.
Low vitamin D in patients with hip fracture is common. In the present study 407 of 872 (47%) patients had serum calcidiol less than 50 nmol/L. Patients with low vitamin D had more delirium, more new hip fractures and more medical readmissions, but not more orthopaedic complications after 1 year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.